FLAME: Fitting Ly$α$ Absorption lines using Machine learning Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2403.07498
We introduce FLAME, a machine-learning algorithm designed to fit Voigt profiles to HI Lyman-alpha (Ly$α$) absorption lines using deep convolutional neural networks. FLAME integrates two algorithms: the first determines the number of components required to fit Ly$α$ absorption lines, and the second calculates the Doppler parameter $b$, the HI column density N$_{\rm HI}$, and the velocity separation of individual components. For the current version of FLAME, we trained it on low-redshift Ly$α$ forests observed with the far-ultraviolet gratings of the Cosmic Origin Spectrograph (COS) on board the Hubble Space Telescope (HST). Using these data, we trained FLAME on $\sim$ $10^6$ simulated Voigt profiles which we forward-modeled to mimic Ly$α$ absorption lines observed with HST-COS in order to classify lines as either single or double components and then determine Voigt profile-fitting parameters. FLAME shows impressive accuracy on the simulated data, identifying more than 98\% (90\%) of single (double) component lines. It determines $b$ values within $\approx \pm{8}~(15)$ km s$^{-1}$ and log $N_{\rm HI}/ {\rm cm}^2$ values within $\approx \pm 0.3~(0.8)$ for 90\% of the single (double) component lines. However, when applied to real data, FLAME's component classification accuracy drops by $\sim$ 10\%. Nevertheless, there is reasonable agreement between the $b$ and N$_{\rm HI}$ distributions obtained from traditional Voigt profile-fitting methods and FLAME's predictions. Our mock HST-COS data analysis, designed to emulate real data parameters, demonstrates that FLAME is able to achieve consistent accuracy comparable to its performance with simulated data. This finding suggests that the drop in FLAME's accuracy when used on real data primarily arises from the difficulty in replicating the full complexity of real data in the training sample.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2403.07498
- https://arxiv.org/pdf/2403.07498
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392781022
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392781022Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2403.07498Digital Object Identifier
- Title
-
FLAME: Fitting Ly$α$ Absorption lines using Machine learningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-12Full publication date if available
- Authors
-
Priyanka Jalan, Vikram Khaire, M. Vivek, Prakash GaikwadList of authors in order
- Landing page
-
https://arxiv.org/abs/2403.07498Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2403.07498Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2403.07498Direct OA link when available
- Concepts
-
Alpha (finance), Absorption (acoustics), Materials science, Physics, Optics, Mathematics, Statistics, Construct validity, PsychometricsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392781022 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2403.07498 |
| ids.doi | https://doi.org/10.48550/arxiv.2403.07498 |
| ids.openalex | https://openalex.org/W4392781022 |
| fwci | |
| type | preprint |
| title | FLAME: Fitting Ly$α$ Absorption lines using Machine learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C64943373 |
| concepts[0].level | 4 |
| concepts[0].score | 0.7471559047698975 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2651003 |
| concepts[0].display_name | Alpha (finance) |
| concepts[1].id | https://openalex.org/C125287762 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6246148943901062 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1758948 |
| concepts[1].display_name | Absorption (acoustics) |
| concepts[2].id | https://openalex.org/C192562407 |
| concepts[2].level | 0 |
| concepts[2].score | 0.3336228132247925 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[2].display_name | Materials science |
| concepts[3].id | https://openalex.org/C121332964 |
| concepts[3].level | 0 |
| concepts[3].score | 0.28195807337760925 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[3].display_name | Physics |
| concepts[4].id | https://openalex.org/C120665830 |
| concepts[4].level | 1 |
| concepts[4].score | 0.22850114107131958 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[4].display_name | Optics |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.17156988382339478 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C105795698 |
| concepts[6].level | 1 |
| concepts[6].score | 0.11805999279022217 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[6].display_name | Statistics |
| concepts[7].id | https://openalex.org/C49453240 |
| concepts[7].level | 3 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1592163 |
| concepts[7].display_name | Construct validity |
| concepts[8].id | https://openalex.org/C171606756 |
| concepts[8].level | 2 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q506132 |
| concepts[8].display_name | Psychometrics |
| keywords[0].id | https://openalex.org/keywords/alpha |
| keywords[0].score | 0.7471559047698975 |
| keywords[0].display_name | Alpha (finance) |
| keywords[1].id | https://openalex.org/keywords/absorption |
| keywords[1].score | 0.6246148943901062 |
| keywords[1].display_name | Absorption (acoustics) |
| keywords[2].id | https://openalex.org/keywords/materials-science |
| keywords[2].score | 0.3336228132247925 |
| keywords[2].display_name | Materials science |
| keywords[3].id | https://openalex.org/keywords/physics |
| keywords[3].score | 0.28195807337760925 |
| keywords[3].display_name | Physics |
| keywords[4].id | https://openalex.org/keywords/optics |
| keywords[4].score | 0.22850114107131958 |
| keywords[4].display_name | Optics |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.17156988382339478 |
| keywords[5].display_name | Mathematics |
| keywords[6].id | https://openalex.org/keywords/statistics |
| keywords[6].score | 0.11805999279022217 |
| keywords[6].display_name | Statistics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2403.07498 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2403.07498 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2403.07498 |
| locations[1].id | doi:10.48550/arxiv.2403.07498 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2403.07498 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5007330126 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0524-5328 |
| authorships[0].author.display_name | Priyanka Jalan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jalan, Priyanka |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5031313641 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8433-5099 |
| authorships[1].author.display_name | Vikram Khaire |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Khaire, Vikram |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5111158791 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | M. Vivek |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Vivek, M. |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5005658594 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2423-7905 |
| authorships[3].author.display_name | Prakash Gaikwad |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Gaikwad, Prakash |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2403.07498 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | FLAME: Fitting Ly$α$ Absorption lines using Machine learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic | |
| related_works | https://openalex.org/W4246450666, https://openalex.org/W4388998267, https://openalex.org/W2898370298, https://openalex.org/W2137437058, https://openalex.org/W4390401159, https://openalex.org/W2744391499, https://openalex.org/W4230250635, https://openalex.org/W3041790586, https://openalex.org/W2018879842, https://openalex.org/W3144504424 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2403.07498 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2403.07498 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2403.07498 |
| primary_location.id | pmh:oai:arXiv.org:2403.07498 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2403.07498 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2403.07498 |
| publication_date | 2024-03-12 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3 |
| abstract_inverted_index.HI | 12, 48 |
| abstract_inverted_index.It | 149 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.as | 119 |
| abstract_inverted_index.by | 188 |
| abstract_inverted_index.in | 114, 245, 258, 266 |
| abstract_inverted_index.is | 193, 226 |
| abstract_inverted_index.it | 68 |
| abstract_inverted_index.km | 156 |
| abstract_inverted_index.of | 31, 57, 64, 78, 144, 171, 263 |
| abstract_inverted_index.on | 69, 84, 97, 135, 250 |
| abstract_inverted_index.or | 122 |
| abstract_inverted_index.to | 7, 11, 34, 106, 116, 180, 218, 228, 233 |
| abstract_inverted_index.we | 66, 94, 104 |
| abstract_inverted_index.$b$ | 151, 198 |
| abstract_inverted_index.For | 60 |
| abstract_inverted_index.Our | 212 |
| abstract_inverted_index.\pm | 167 |
| abstract_inverted_index.and | 39, 53, 125, 158, 199, 209 |
| abstract_inverted_index.fit | 8, 35 |
| abstract_inverted_index.for | 169 |
| abstract_inverted_index.its | 234 |
| abstract_inverted_index.log | 159 |
| abstract_inverted_index.the | 26, 29, 40, 43, 47, 54, 61, 75, 79, 86, 136, 172, 197, 243, 256, 260, 267 |
| abstract_inverted_index.two | 24 |
| abstract_inverted_index.$b$, | 46 |
| abstract_inverted_index.90\% | 170 |
| abstract_inverted_index.98\% | 142 |
| abstract_inverted_index.HI}$ | 201 |
| abstract_inverted_index.HI}/ | 161 |
| abstract_inverted_index.This | 239 |
| abstract_inverted_index.able | 227 |
| abstract_inverted_index.data | 215, 221, 252, 265 |
| abstract_inverted_index.deep | 18 |
| abstract_inverted_index.drop | 244 |
| abstract_inverted_index.from | 204, 255 |
| abstract_inverted_index.full | 261 |
| abstract_inverted_index.mock | 213 |
| abstract_inverted_index.more | 140 |
| abstract_inverted_index.real | 181, 220, 251, 264 |
| abstract_inverted_index.than | 141 |
| abstract_inverted_index.that | 224, 242 |
| abstract_inverted_index.then | 126 |
| abstract_inverted_index.used | 249 |
| abstract_inverted_index.when | 178, 248 |
| abstract_inverted_index.with | 74, 112, 236 |
| abstract_inverted_index.{\rm | 162 |
| abstract_inverted_index.(COS) | 83 |
| abstract_inverted_index.10\%. | 190 |
| abstract_inverted_index.FLAME | 22, 96, 131, 225 |
| abstract_inverted_index.HI}$, | 52 |
| abstract_inverted_index.Space | 88 |
| abstract_inverted_index.Using | 91 |
| abstract_inverted_index.Voigt | 9, 101, 128, 206 |
| abstract_inverted_index.board | 85 |
| abstract_inverted_index.data, | 93, 138, 182 |
| abstract_inverted_index.data. | 238 |
| abstract_inverted_index.drops | 187 |
| abstract_inverted_index.first | 27 |
| abstract_inverted_index.lines | 16, 110, 118 |
| abstract_inverted_index.mimic | 107 |
| abstract_inverted_index.order | 115 |
| abstract_inverted_index.shows | 132 |
| abstract_inverted_index.there | 192 |
| abstract_inverted_index.these | 92 |
| abstract_inverted_index.using | 17 |
| abstract_inverted_index.which | 103 |
| abstract_inverted_index.$10^6$ | 99 |
| abstract_inverted_index.$\sim$ | 98, 189 |
| abstract_inverted_index.(90\%) | 143 |
| abstract_inverted_index.(HST). | 90 |
| abstract_inverted_index.Cosmic | 80 |
| abstract_inverted_index.FLAME, | 2, 65 |
| abstract_inverted_index.Hubble | 87 |
| abstract_inverted_index.Ly$α$ | 36, 71, 108 |
| abstract_inverted_index.Origin | 81 |
| abstract_inverted_index.arises | 254 |
| abstract_inverted_index.cm}^2$ | 163 |
| abstract_inverted_index.column | 49 |
| abstract_inverted_index.double | 123 |
| abstract_inverted_index.either | 120 |
| abstract_inverted_index.lines, | 38 |
| abstract_inverted_index.lines. | 148, 176 |
| abstract_inverted_index.neural | 20 |
| abstract_inverted_index.number | 30 |
| abstract_inverted_index.second | 41 |
| abstract_inverted_index.single | 121, 145, 173 |
| abstract_inverted_index.values | 152, 164 |
| abstract_inverted_index.within | 153, 165 |
| abstract_inverted_index.$N_{\rm | 160 |
| abstract_inverted_index.Doppler | 44 |
| abstract_inverted_index.FLAME's | 183, 210, 246 |
| abstract_inverted_index.HST-COS | 113, 214 |
| abstract_inverted_index.N$_{\rm | 51, 200 |
| abstract_inverted_index.achieve | 229 |
| abstract_inverted_index.applied | 179 |
| abstract_inverted_index.between | 196 |
| abstract_inverted_index.current | 62 |
| abstract_inverted_index.density | 50 |
| abstract_inverted_index.emulate | 219 |
| abstract_inverted_index.finding | 240 |
| abstract_inverted_index.forests | 72 |
| abstract_inverted_index.methods | 208 |
| abstract_inverted_index.sample. | 269 |
| abstract_inverted_index.trained | 67, 95 |
| abstract_inverted_index.version | 63 |
| abstract_inverted_index.$\approx | 154, 166 |
| abstract_inverted_index.(Ly$α$) | 14 |
| abstract_inverted_index.(double) | 146, 174 |
| abstract_inverted_index.However, | 177 |
| abstract_inverted_index.accuracy | 134, 186, 231, 247 |
| abstract_inverted_index.classify | 117 |
| abstract_inverted_index.designed | 6, 217 |
| abstract_inverted_index.gratings | 77 |
| abstract_inverted_index.observed | 73, 111 |
| abstract_inverted_index.obtained | 203 |
| abstract_inverted_index.profiles | 10, 102 |
| abstract_inverted_index.required | 33 |
| abstract_inverted_index.s$^{-1}$ | 157 |
| abstract_inverted_index.suggests | 241 |
| abstract_inverted_index.training | 268 |
| abstract_inverted_index.velocity | 55 |
| abstract_inverted_index.Telescope | 89 |
| abstract_inverted_index.agreement | 195 |
| abstract_inverted_index.algorithm | 5 |
| abstract_inverted_index.analysis, | 216 |
| abstract_inverted_index.component | 147, 175, 184 |
| abstract_inverted_index.determine | 127 |
| abstract_inverted_index.introduce | 1 |
| abstract_inverted_index.networks. | 21 |
| abstract_inverted_index.parameter | 45 |
| abstract_inverted_index.primarily | 253 |
| abstract_inverted_index.simulated | 100, 137, 237 |
| abstract_inverted_index.0.3~(0.8)$ | 168 |
| abstract_inverted_index.absorption | 15, 37, 109 |
| abstract_inverted_index.calculates | 42 |
| abstract_inverted_index.comparable | 232 |
| abstract_inverted_index.complexity | 262 |
| abstract_inverted_index.components | 32, 124 |
| abstract_inverted_index.consistent | 230 |
| abstract_inverted_index.determines | 28, 150 |
| abstract_inverted_index.difficulty | 257 |
| abstract_inverted_index.impressive | 133 |
| abstract_inverted_index.individual | 58 |
| abstract_inverted_index.integrates | 23 |
| abstract_inverted_index.reasonable | 194 |
| abstract_inverted_index.separation | 56 |
| abstract_inverted_index.Lyman-alpha | 13 |
| abstract_inverted_index.algorithms: | 25 |
| abstract_inverted_index.components. | 59 |
| abstract_inverted_index.identifying | 139 |
| abstract_inverted_index.parameters, | 222 |
| abstract_inverted_index.parameters. | 130 |
| abstract_inverted_index.performance | 235 |
| abstract_inverted_index.replicating | 259 |
| abstract_inverted_index.traditional | 205 |
| abstract_inverted_index.Spectrograph | 82 |
| abstract_inverted_index.\pm{8}~(15)$ | 155 |
| abstract_inverted_index.demonstrates | 223 |
| abstract_inverted_index.low-redshift | 70 |
| abstract_inverted_index.predictions. | 211 |
| abstract_inverted_index.Nevertheless, | 191 |
| abstract_inverted_index.convolutional | 19 |
| abstract_inverted_index.distributions | 202 |
| abstract_inverted_index.classification | 185 |
| abstract_inverted_index.far-ultraviolet | 76 |
| abstract_inverted_index.forward-modeled | 105 |
| abstract_inverted_index.profile-fitting | 129, 207 |
| abstract_inverted_index.machine-learning | 4 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |