Flash-Flood Potential Mapping Using Deep Learning, Alternating Decision Trees and Data Provided by Remote Sensing Sensors Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.3390/s21010280
There is an evident increase in the importance that remote sensing sensors play in the monitoring and evaluation of natural hazards susceptibility and risk. The present study aims to assess the flash-flood potential values, in a small catchment from Romania, using information provided remote sensing sensors and Geographic Informational Systems (GIS) databases which were involved as input data into a number of four ensemble models. In a first phase, with the help of high-resolution satellite images from the Google Earth application, 481 points affected by torrential processes were acquired, another 481 points being randomly positioned in areas without torrential processes. Seventy percent of the dataset was kept as training data, while the other 30% was assigned to validating sample. Further, in order to train the machine learning models, information regarding the 10 flash-flood predictors was extracted in the training sample locations. Finally, the following four ensembles were used to calculate the Flash-Flood Potential Index across the Bâsca Chiojdului river basin: Deep Learning Neural Network–Frequency Ratio (DLNN-FR), Deep Learning Neural Network–Weights of Evidence (DLNN-WOE), Alternating Decision Trees–Frequency Ratio (ADT-FR) and Alternating Decision Trees–Weights of Evidence (ADT-WOE). The model’s performances were assessed using several statistical metrics. Thus, in terms of Sensitivity, the highest value of 0.985 was achieved by the DLNN-FR model, meanwhile the lowest one (0.866) was assigned to ADT-FR ensemble. Moreover, the specificity analysis shows that the highest value (0.991) was attributed to DLNN-WOE algorithm, while the lowest value (0.892) was achieved by ADT-FR. During the training procedure, the models achieved overall accuracies between 0.878 (ADT-FR) and 0.985 (DLNN-WOE). K-index shows again that the most performant model was DLNN-WOE (0.97). The Flash-Flood Potential Index (FFPI) values revealed that the surfaces with high and very high flash-flood susceptibility cover between 46.57% (DLNN-FR) and 59.38% (ADT-FR) of the study zone. The use of the Receiver Operating Characteristic (ROC) curve for results validation highlights the fact that FFPIDLNN-WOE is characterized by the most precise results with an Area Under Curve of 0.96.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s21010280
- https://www.mdpi.com/1424-8220/21/1/280/pdf?version=1609747484
- OA Status
- gold
- Cited By
- 79
- References
- 83
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3120702290
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3120702290Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s21010280Digital Object Identifier
- Title
-
Flash-Flood Potential Mapping Using Deep Learning, Alternating Decision Trees and Data Provided by Remote Sensing SensorsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-04Full publication date if available
- Authors
-
Romulus Costache, Alireza Arabameri, Thomas Blaschke, Quoc Bao Pham, Binh Thai Pham, Manish Pandey, Aman Arora, Nguyễn Thị Thùy Linh, Iulia CostacheList of authors in order
- Landing page
-
https://doi.org/10.3390/s21010280Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/21/1/280/pdf?version=1609747484Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/21/1/280/pdf?version=1609747484Direct OA link when available
- Concepts
-
Flash flood, Artificial neural network, Sample (material), Decision tree, Random forest, Flood myth, Remote sensing, Artificial intelligence, Computer science, Ensemble learning, Deep learning, Machine learning, Data mining, Environmental science, Cartography, Geography, Chemistry, Archaeology, ChromatographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
79Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 14, 2024: 14, 2023: 19, 2022: 22, 2021: 10Per-year citation counts (last 5 years)
- References (count)
-
83Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3120702290 |
|---|---|
| doi | https://doi.org/10.3390/s21010280 |
| ids.doi | https://doi.org/10.3390/s21010280 |
| ids.mag | 3120702290 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/33406613 |
| ids.openalex | https://openalex.org/W3120702290 |
| fwci | 7.73917211 |
| type | article |
| title | Flash-Flood Potential Mapping Using Deep Learning, Alternating Decision Trees and Data Provided by Remote Sensing Sensors |
| biblio.issue | 1 |
| biblio.volume | 21 |
| biblio.last_page | 280 |
| biblio.first_page | 280 |
| topics[0].id | https://openalex.org/T10930 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2306 |
| topics[0].subfield.display_name | Global and Planetary Change |
| topics[0].display_name | Flood Risk Assessment and Management |
| topics[1].id | https://openalex.org/T10330 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9969000220298767 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2312 |
| topics[1].subfield.display_name | Water Science and Technology |
| topics[1].display_name | Hydrology and Watershed Management Studies |
| topics[2].id | https://openalex.org/T11186 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9955000281333923 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2306 |
| topics[2].subfield.display_name | Global and Planetary Change |
| topics[2].display_name | Hydrology and Drought Analysis |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 1782 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 1921 |
| concepts[0].id | https://openalex.org/C120417685 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8135658502578735 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q860333 |
| concepts[0].display_name | Flash flood |
| concepts[1].id | https://openalex.org/C50644808 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6098575592041016 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[1].display_name | Artificial neural network |
| concepts[2].id | https://openalex.org/C198531522 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5610746145248413 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q485146 |
| concepts[2].display_name | Sample (material) |
| concepts[3].id | https://openalex.org/C84525736 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5561797022819519 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q831366 |
| concepts[3].display_name | Decision tree |
| concepts[4].id | https://openalex.org/C169258074 |
| concepts[4].level | 2 |
| concepts[4].score | 0.52271968126297 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[4].display_name | Random forest |
| concepts[5].id | https://openalex.org/C74256435 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5182516574859619 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q134052 |
| concepts[5].display_name | Flood myth |
| concepts[6].id | https://openalex.org/C62649853 |
| concepts[6].level | 1 |
| concepts[6].score | 0.515917181968689 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[6].display_name | Remote sensing |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.47240394353866577 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.4705807566642761 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C45942800 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4499668478965759 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q245652 |
| concepts[9].display_name | Ensemble learning |
| concepts[10].id | https://openalex.org/C108583219 |
| concepts[10].level | 2 |
| concepts[10].score | 0.41426071524620056 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[10].display_name | Deep learning |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3627665936946869 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C124101348 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3619697690010071 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[12].display_name | Data mining |
| concepts[13].id | https://openalex.org/C39432304 |
| concepts[13].level | 0 |
| concepts[13].score | 0.3400803804397583 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[13].display_name | Environmental science |
| concepts[14].id | https://openalex.org/C58640448 |
| concepts[14].level | 1 |
| concepts[14].score | 0.33438563346862793 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[14].display_name | Cartography |
| concepts[15].id | https://openalex.org/C205649164 |
| concepts[15].level | 0 |
| concepts[15].score | 0.2963986396789551 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[15].display_name | Geography |
| concepts[16].id | https://openalex.org/C185592680 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[16].display_name | Chemistry |
| concepts[17].id | https://openalex.org/C166957645 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[17].display_name | Archaeology |
| concepts[18].id | https://openalex.org/C43617362 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q170050 |
| concepts[18].display_name | Chromatography |
| keywords[0].id | https://openalex.org/keywords/flash-flood |
| keywords[0].score | 0.8135658502578735 |
| keywords[0].display_name | Flash flood |
| keywords[1].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[1].score | 0.6098575592041016 |
| keywords[1].display_name | Artificial neural network |
| keywords[2].id | https://openalex.org/keywords/sample |
| keywords[2].score | 0.5610746145248413 |
| keywords[2].display_name | Sample (material) |
| keywords[3].id | https://openalex.org/keywords/decision-tree |
| keywords[3].score | 0.5561797022819519 |
| keywords[3].display_name | Decision tree |
| keywords[4].id | https://openalex.org/keywords/random-forest |
| keywords[4].score | 0.52271968126297 |
| keywords[4].display_name | Random forest |
| keywords[5].id | https://openalex.org/keywords/flood-myth |
| keywords[5].score | 0.5182516574859619 |
| keywords[5].display_name | Flood myth |
| keywords[6].id | https://openalex.org/keywords/remote-sensing |
| keywords[6].score | 0.515917181968689 |
| keywords[6].display_name | Remote sensing |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.47240394353866577 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.4705807566642761 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/ensemble-learning |
| keywords[9].score | 0.4499668478965759 |
| keywords[9].display_name | Ensemble learning |
| keywords[10].id | https://openalex.org/keywords/deep-learning |
| keywords[10].score | 0.41426071524620056 |
| keywords[10].display_name | Deep learning |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.3627665936946869 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/data-mining |
| keywords[12].score | 0.3619697690010071 |
| keywords[12].display_name | Data mining |
| keywords[13].id | https://openalex.org/keywords/environmental-science |
| keywords[13].score | 0.3400803804397583 |
| keywords[13].display_name | Environmental science |
| keywords[14].id | https://openalex.org/keywords/cartography |
| keywords[14].score | 0.33438563346862793 |
| keywords[14].display_name | Cartography |
| keywords[15].id | https://openalex.org/keywords/geography |
| keywords[15].score | 0.2963986396789551 |
| keywords[15].display_name | Geography |
| language | en |
| locations[0].id | doi:10.3390/s21010280 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/21/1/280/pdf?version=1609747484 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s21010280 |
| locations[1].id | pmid:33406613 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/33406613 |
| locations[2].id | pmh:oai:doaj.org/article:8e860ef3364f43f58cf6ef4afbd14863 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 21, Iss 1, p 280 (2021) |
| locations[2].landing_page_url | https://doaj.org/article/8e860ef3364f43f58cf6ef4afbd14863 |
| locations[3].id | pmh:oai:europepmc.org:6705827 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | http://europepmc.org/pmc/articles/PMC7796316 |
| locations[4].id | pmh:oai:mdpi.com:/1424-8220/21/1/280/ |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306400947 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | True |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | MDPI (MDPI AG) |
| locations[4].source.host_organization | https://openalex.org/I4210097602 |
| locations[4].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[4].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Sensors; Volume 21; Issue 1; Pages: 280 |
| locations[4].landing_page_url | https://dx.doi.org/10.3390/s21010280 |
| locations[5].id | pmh:oai:pubmedcentral.nih.gov:7796316 |
| locations[5].is_oa | True |
| locations[5].source.id | https://openalex.org/S2764455111 |
| locations[5].source.issn | |
| locations[5].source.type | repository |
| locations[5].source.is_oa | False |
| locations[5].source.issn_l | |
| locations[5].source.is_core | False |
| locations[5].source.is_in_doaj | False |
| locations[5].source.display_name | PubMed Central |
| locations[5].source.host_organization | https://openalex.org/I1299303238 |
| locations[5].source.host_organization_name | National Institutes of Health |
| locations[5].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[5].license | other-oa |
| locations[5].pdf_url | |
| locations[5].version | submittedVersion |
| locations[5].raw_type | Text |
| locations[5].license_id | https://openalex.org/licenses/other-oa |
| locations[5].is_accepted | False |
| locations[5].is_published | False |
| locations[5].raw_source_name | Sensors (Basel) |
| locations[5].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/7796316 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5066655516 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6876-8572 |
| authorships[0].author.display_name | Romulus Costache |
| authorships[0].countries | RO |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210087277 |
| authorships[0].affiliations[0].raw_affiliation_string | National Institute of Hydrology and Water Management, București-Ploiești Road, 97E, 1st District, 013686 Bucharest, Romania |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I141595442 |
| authorships[0].affiliations[1].raw_affiliation_string | Research Institute of the University of Bucharest, 90-92 Sos. Panduri, 5th District, 050663 Bucharest, Romania |
| authorships[0].institutions[0].id | https://openalex.org/I4210087277 |
| authorships[0].institutions[0].ror | https://ror.org/0005tvh12 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210087277 |
| authorships[0].institutions[0].country_code | RO |
| authorships[0].institutions[0].display_name | National Institute of Hydrology and Water Management |
| authorships[0].institutions[1].id | https://openalex.org/I141595442 |
| authorships[0].institutions[1].ror | https://ror.org/02x2v6p15 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I141595442 |
| authorships[0].institutions[1].country_code | RO |
| authorships[0].institutions[1].display_name | University of Bucharest |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Romulus Costache |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | National Institute of Hydrology and Water Management, București-Ploiești Road, 97E, 1st District, 013686 Bucharest, Romania, Research Institute of the University of Bucharest, 90-92 Sos. Panduri, 5th District, 050663 Bucharest, Romania |
| authorships[1].author.id | https://openalex.org/A5063208791 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1142-1666 |
| authorships[1].author.display_name | Alireza Arabameri |
| authorships[1].countries | IR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1516879 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Geomorphology, Tarbiat Modares University, Tehran 36581-17994, Iranmailto |
| authorships[1].institutions[0].id | https://openalex.org/I1516879 |
| authorships[1].institutions[0].ror | https://ror.org/03mwgfy56 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I1516879 |
| authorships[1].institutions[0].country_code | IR |
| authorships[1].institutions[0].display_name | Tarbiat Modares University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Alireza Arabameri |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Geomorphology, Tarbiat Modares University, Tehran 36581-17994, Iranmailto |
| authorships[2].author.id | https://openalex.org/A5056842687 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1860-8458 |
| authorships[2].author.display_name | Thomas Blaschke |
| authorships[2].countries | AT |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I182212641 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Geoinformatics–Z_GIS, University of Salzburg, 5020 Salzburg, Austria |
| authorships[2].institutions[0].id | https://openalex.org/I182212641 |
| authorships[2].institutions[0].ror | https://ror.org/05gs8cd61 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I182212641 |
| authorships[2].institutions[0].country_code | AT |
| authorships[2].institutions[0].display_name | University of Salzburg |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Thomas Blaschke |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Geoinformatics–Z_GIS, University of Salzburg, 5020 Salzburg, Austria |
| authorships[3].author.id | https://openalex.org/A5042425451 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0468-5962 |
| authorships[3].author.display_name | Quoc Bao Pham |
| authorships[3].countries | VN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I141445968 |
| authorships[3].affiliations[0].raw_affiliation_string | Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I141445968 |
| authorships[3].affiliations[1].raw_affiliation_string | Environmental Quality, Atmospheric Science and Climate Change Research Group, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam |
| authorships[3].institutions[0].id | https://openalex.org/I141445968 |
| authorships[3].institutions[0].ror | https://ror.org/01drq0835 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I141445968 |
| authorships[3].institutions[0].country_code | VN |
| authorships[3].institutions[0].display_name | Ton Duc Thang University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Quoc Bao Pham |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Environmental Quality, Atmospheric Science and Climate Change Research Group, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam |
| authorships[4].author.id | https://openalex.org/A5029814958 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9707-840X |
| authorships[4].author.display_name | Binh Thai Pham |
| authorships[4].countries | VN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210138918 |
| authorships[4].affiliations[0].raw_affiliation_string | Geotechnical Engineering Deparment, University of Transport Technology, Hanoi 100000, Vietnam |
| authorships[4].institutions[0].id | https://openalex.org/I4210138918 |
| authorships[4].institutions[0].ror | https://ror.org/04dp8y877 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210138918 |
| authorships[4].institutions[0].country_code | VN |
| authorships[4].institutions[0].display_name | University Of Transport Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Binh Thai Pham |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Geotechnical Engineering Deparment, University of Transport Technology, Hanoi 100000, Vietnam |
| authorships[5].author.id | https://openalex.org/A5070972968 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8291-2043 |
| authorships[5].author.display_name | Manish Pandey |
| authorships[5].countries | IN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I101407740 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Civil Engineering, University Institute of Engineering, Chandigarh University, Punjab 140413, India |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I101407740 |
| authorships[5].affiliations[1].raw_affiliation_string | University Center for Research & Development (UCRD), Chandigarh University, Punjab 140413, India |
| authorships[5].institutions[0].id | https://openalex.org/I101407740 |
| authorships[5].institutions[0].ror | https://ror.org/05t4pvx35 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I101407740 |
| authorships[5].institutions[0].country_code | IN |
| authorships[5].institutions[0].display_name | Chandigarh University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Manish Pandey |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Civil Engineering, University Institute of Engineering, Chandigarh University, Punjab 140413, India, University Center for Research & Development (UCRD), Chandigarh University, Punjab 140413, India |
| authorships[6].author.id | https://openalex.org/A5101424427 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-9396-8720 |
| authorships[6].author.display_name | Aman Arora |
| authorships[6].countries | IN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I59475050 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Geography, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India |
| authorships[6].institutions[0].id | https://openalex.org/I59475050 |
| authorships[6].institutions[0].ror | https://ror.org/00pnhhv55 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I59475050 |
| authorships[6].institutions[0].country_code | IN |
| authorships[6].institutions[0].display_name | Jamia Millia Islamia |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Aman Arora |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Geography, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India |
| authorships[7].author.id | https://openalex.org/A5036310727 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Nguyễn Thị Thùy Linh |
| authorships[7].countries | VN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I170238339 |
| authorships[7].affiliations[0].raw_affiliation_string | Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I170238339 |
| authorships[7].affiliations[1].raw_affiliation_string | Faculty of Environmental and Chemical Engineering, Duy Tan University, Danang 550000, Vietnam |
| authorships[7].institutions[0].id | https://openalex.org/I170238339 |
| authorships[7].institutions[0].ror | https://ror.org/05ezss144 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I170238339 |
| authorships[7].institutions[0].country_code | VN |
| authorships[7].institutions[0].display_name | Duy Tan University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Nguyen Thi Thuy Linh |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Faculty of Environmental and Chemical Engineering, Duy Tan University, Danang 550000, Vietnam, Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam |
| authorships[8].author.id | https://openalex.org/A5085750727 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-1779-8173 |
| authorships[8].author.display_name | Iulia Costache |
| authorships[8].countries | RO |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I141595442 |
| authorships[8].affiliations[0].raw_affiliation_string | Faculty of Geography, University of Bucharest, Bd. Nicolae Bălcescu No 1, 1st District, 010041 Bucharest, Romania |
| authorships[8].institutions[0].id | https://openalex.org/I141595442 |
| authorships[8].institutions[0].ror | https://ror.org/02x2v6p15 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I141595442 |
| authorships[8].institutions[0].country_code | RO |
| authorships[8].institutions[0].display_name | University of Bucharest |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Iulia Costache |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Faculty of Geography, University of Bucharest, Bd. Nicolae Bălcescu No 1, 1st District, 010041 Bucharest, Romania |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/21/1/280/pdf?version=1609747484 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Flash-Flood Potential Mapping Using Deep Learning, Alternating Decision Trees and Data Provided by Remote Sensing Sensors |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10930 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2306 |
| primary_topic.subfield.display_name | Global and Planetary Change |
| primary_topic.display_name | Flood Risk Assessment and Management |
| related_works | https://openalex.org/W4286560687, https://openalex.org/W4366990902, https://openalex.org/W4317732970, https://openalex.org/W2944292463, https://openalex.org/W4388550696, https://openalex.org/W3014252901, https://openalex.org/W4321636153, https://openalex.org/W4313289487, https://openalex.org/W2188759683, https://openalex.org/W4317376680 |
| cited_by_count | 79 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 14 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 14 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 19 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 22 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 10 |
| locations_count | 6 |
| best_oa_location.id | doi:10.3390/s21010280 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/21/1/280/pdf?version=1609747484 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s21010280 |
| primary_location.id | doi:10.3390/s21010280 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/21/1/280/pdf?version=1609747484 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s21010280 |
| publication_date | 2021-01-04 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2931255315, https://openalex.org/W2980856923, https://openalex.org/W2922019787, https://openalex.org/W2521812267, https://openalex.org/W2907566391, https://openalex.org/W6627078585, https://openalex.org/W2998999740, https://openalex.org/W2975358916, https://openalex.org/W2989700724, https://openalex.org/W2961272742, https://openalex.org/W3023906501, https://openalex.org/W3031585495, https://openalex.org/W2975878144, https://openalex.org/W3004984383, https://openalex.org/W3028457518, https://openalex.org/W2995351650, https://openalex.org/W2936881409, https://openalex.org/W2028692367, https://openalex.org/W2889026657, https://openalex.org/W1136818270, https://openalex.org/W2984848303, https://openalex.org/W3008932534, https://openalex.org/W2903034862, https://openalex.org/W2973022519, https://openalex.org/W2761287863, https://openalex.org/W3016701685, https://openalex.org/W2979371270, https://openalex.org/W3033828772, https://openalex.org/W2967592538, https://openalex.org/W3016525206, https://openalex.org/W3007642752, https://openalex.org/W2789329162, https://openalex.org/W3085012075, https://openalex.org/W2921015455, https://openalex.org/W2964683445, https://openalex.org/W2626788333, https://openalex.org/W2408377373, https://openalex.org/W2979804492, https://openalex.org/W2953423956, https://openalex.org/W1965920041, https://openalex.org/W2604912589, https://openalex.org/W2793299497, https://openalex.org/W2898987827, https://openalex.org/W2925270751, https://openalex.org/W2927539500, https://openalex.org/W3036595569, https://openalex.org/W2985766090, https://openalex.org/W2640557513, https://openalex.org/W2978908408, https://openalex.org/W2774595919, https://openalex.org/W2895196240, https://openalex.org/W2955858817, https://openalex.org/W2998297225, https://openalex.org/W2973053290, https://openalex.org/W3020916385, https://openalex.org/W2042315239, https://openalex.org/W2187706939, https://openalex.org/W2266000645, https://openalex.org/W2946746912, https://openalex.org/W2756951951, https://openalex.org/W1952549409, https://openalex.org/W2947706525, https://openalex.org/W2572700843, https://openalex.org/W3015148471, https://openalex.org/W2942564125, https://openalex.org/W2774072384, https://openalex.org/W2037575202, https://openalex.org/W1977085977, https://openalex.org/W2057039778, https://openalex.org/W2076063813, https://openalex.org/W2990338582, https://openalex.org/W2188305289, https://openalex.org/W2996089053, https://openalex.org/W2205158676, https://openalex.org/W6639409548, https://openalex.org/W2791328889, https://openalex.org/W3097185428, https://openalex.org/W2996578675, https://openalex.org/W2063585464, https://openalex.org/W1114923635, https://openalex.org/W3100892116, https://openalex.org/W1881647329, https://openalex.org/W3101531460 |
| referenced_works_count | 83 |
| abstract_inverted_index.a | 35, 59, 66 |
| abstract_inverted_index.10 | 131 |
| abstract_inverted_index.In | 65 |
| abstract_inverted_index.an | 2, 323 |
| abstract_inverted_index.as | 55, 107 |
| abstract_inverted_index.by | 84, 206, 242, 317 |
| abstract_inverted_index.in | 5, 13, 34, 95, 120, 136, 195 |
| abstract_inverted_index.is | 1, 315 |
| abstract_inverted_index.of | 18, 61, 72, 102, 170, 182, 197, 202, 294, 300, 327 |
| abstract_inverted_index.to | 28, 116, 122, 148, 217, 232 |
| abstract_inverted_index.30% | 113 |
| abstract_inverted_index.481 | 81, 90 |
| abstract_inverted_index.The | 24, 185, 270, 298 |
| abstract_inverted_index.and | 16, 22, 46, 178, 256, 282, 291 |
| abstract_inverted_index.for | 307 |
| abstract_inverted_index.one | 213 |
| abstract_inverted_index.the | 6, 14, 30, 70, 77, 103, 111, 124, 130, 137, 142, 150, 155, 199, 207, 211, 221, 226, 236, 245, 248, 263, 278, 295, 301, 311, 318 |
| abstract_inverted_index.use | 299 |
| abstract_inverted_index.was | 105, 114, 134, 204, 215, 230, 240, 267 |
| abstract_inverted_index.Area | 324 |
| abstract_inverted_index.Deep | 160, 166 |
| abstract_inverted_index.aims | 27 |
| abstract_inverted_index.data | 57 |
| abstract_inverted_index.fact | 312 |
| abstract_inverted_index.four | 62, 144 |
| abstract_inverted_index.from | 38, 76 |
| abstract_inverted_index.help | 71 |
| abstract_inverted_index.high | 281, 284 |
| abstract_inverted_index.into | 58 |
| abstract_inverted_index.kept | 106 |
| abstract_inverted_index.most | 264, 319 |
| abstract_inverted_index.play | 12 |
| abstract_inverted_index.that | 8, 225, 262, 277, 313 |
| abstract_inverted_index.used | 147 |
| abstract_inverted_index.very | 283 |
| abstract_inverted_index.were | 53, 87, 146, 188 |
| abstract_inverted_index.with | 69, 280, 322 |
| abstract_inverted_index.(GIS) | 50 |
| abstract_inverted_index.(ROC) | 305 |
| abstract_inverted_index.0.878 | 254 |
| abstract_inverted_index.0.96. | 328 |
| abstract_inverted_index.0.985 | 203, 257 |
| abstract_inverted_index.Curve | 326 |
| abstract_inverted_index.Earth | 79 |
| abstract_inverted_index.Index | 153, 273 |
| abstract_inverted_index.Ratio | 164, 176 |
| abstract_inverted_index.There | 0 |
| abstract_inverted_index.Thus, | 194 |
| abstract_inverted_index.Under | 325 |
| abstract_inverted_index.again | 261 |
| abstract_inverted_index.areas | 96 |
| abstract_inverted_index.being | 92 |
| abstract_inverted_index.cover | 287 |
| abstract_inverted_index.curve | 306 |
| abstract_inverted_index.data, | 109 |
| abstract_inverted_index.first | 67 |
| abstract_inverted_index.input | 56 |
| abstract_inverted_index.model | 266 |
| abstract_inverted_index.order | 121 |
| abstract_inverted_index.other | 112 |
| abstract_inverted_index.risk. | 23 |
| abstract_inverted_index.river | 158 |
| abstract_inverted_index.shows | 224, 260 |
| abstract_inverted_index.small | 36 |
| abstract_inverted_index.study | 26, 296 |
| abstract_inverted_index.terms | 196 |
| abstract_inverted_index.train | 123 |
| abstract_inverted_index.using | 40, 190 |
| abstract_inverted_index.value | 201, 228, 238 |
| abstract_inverted_index.which | 52 |
| abstract_inverted_index.while | 110, 235 |
| abstract_inverted_index.zone. | 297 |
| abstract_inverted_index.(FFPI) | 274 |
| abstract_inverted_index.46.57% | 289 |
| abstract_inverted_index.59.38% | 292 |
| abstract_inverted_index.ADT-FR | 218 |
| abstract_inverted_index.Bâsca | 156 |
| abstract_inverted_index.During | 244 |
| abstract_inverted_index.Google | 78 |
| abstract_inverted_index.Neural | 162, 168 |
| abstract_inverted_index.across | 154 |
| abstract_inverted_index.assess | 29 |
| abstract_inverted_index.basin: | 159 |
| abstract_inverted_index.images | 75 |
| abstract_inverted_index.lowest | 212, 237 |
| abstract_inverted_index.model, | 209 |
| abstract_inverted_index.models | 249 |
| abstract_inverted_index.number | 60 |
| abstract_inverted_index.phase, | 68 |
| abstract_inverted_index.points | 82, 91 |
| abstract_inverted_index.remote | 9, 43 |
| abstract_inverted_index.sample | 139 |
| abstract_inverted_index.values | 275 |
| abstract_inverted_index.(0.866) | 214 |
| abstract_inverted_index.(0.892) | 239 |
| abstract_inverted_index.(0.97). | 269 |
| abstract_inverted_index.(0.991) | 229 |
| abstract_inverted_index.ADT-FR. | 243 |
| abstract_inverted_index.DLNN-FR | 208 |
| abstract_inverted_index.K-index | 259 |
| abstract_inverted_index.Seventy | 100 |
| abstract_inverted_index.Systems | 49 |
| abstract_inverted_index.another | 89 |
| abstract_inverted_index.between | 253, 288 |
| abstract_inverted_index.dataset | 104 |
| abstract_inverted_index.evident | 3 |
| abstract_inverted_index.hazards | 20 |
| abstract_inverted_index.highest | 200, 227 |
| abstract_inverted_index.machine | 125 |
| abstract_inverted_index.models, | 127 |
| abstract_inverted_index.models. | 64 |
| abstract_inverted_index.natural | 19 |
| abstract_inverted_index.overall | 251 |
| abstract_inverted_index.percent | 101 |
| abstract_inverted_index.precise | 320 |
| abstract_inverted_index.present | 25 |
| abstract_inverted_index.results | 308, 321 |
| abstract_inverted_index.sample. | 118 |
| abstract_inverted_index.sensing | 10, 44 |
| abstract_inverted_index.sensors | 11, 45 |
| abstract_inverted_index.several | 191 |
| abstract_inverted_index.values, | 33 |
| abstract_inverted_index.without | 97 |
| abstract_inverted_index.(ADT-FR) | 177, 255, 293 |
| abstract_inverted_index.DLNN-WOE | 233, 268 |
| abstract_inverted_index.Decision | 174, 180 |
| abstract_inverted_index.Evidence | 171, 183 |
| abstract_inverted_index.Finally, | 141 |
| abstract_inverted_index.Further, | 119 |
| abstract_inverted_index.Learning | 161, 167 |
| abstract_inverted_index.Receiver | 302 |
| abstract_inverted_index.Romania, | 39 |
| abstract_inverted_index.achieved | 205, 241, 250 |
| abstract_inverted_index.affected | 83 |
| abstract_inverted_index.analysis | 223 |
| abstract_inverted_index.assessed | 189 |
| abstract_inverted_index.assigned | 115, 216 |
| abstract_inverted_index.ensemble | 63 |
| abstract_inverted_index.increase | 4 |
| abstract_inverted_index.involved | 54 |
| abstract_inverted_index.learning | 126 |
| abstract_inverted_index.metrics. | 193 |
| abstract_inverted_index.provided | 42 |
| abstract_inverted_index.randomly | 93 |
| abstract_inverted_index.revealed | 276 |
| abstract_inverted_index.surfaces | 279 |
| abstract_inverted_index.training | 108, 138, 246 |
| abstract_inverted_index.(DLNN-FR) | 290 |
| abstract_inverted_index.Moreover, | 220 |
| abstract_inverted_index.Operating | 303 |
| abstract_inverted_index.Potential | 152, 272 |
| abstract_inverted_index.acquired, | 88 |
| abstract_inverted_index.calculate | 149 |
| abstract_inverted_index.catchment | 37 |
| abstract_inverted_index.databases | 51 |
| abstract_inverted_index.ensemble. | 219 |
| abstract_inverted_index.ensembles | 145 |
| abstract_inverted_index.extracted | 135 |
| abstract_inverted_index.following | 143 |
| abstract_inverted_index.meanwhile | 210 |
| abstract_inverted_index.model’s | 186 |
| abstract_inverted_index.potential | 32 |
| abstract_inverted_index.processes | 86 |
| abstract_inverted_index.regarding | 129 |
| abstract_inverted_index.satellite | 74 |
| abstract_inverted_index.(ADT-WOE). | 184 |
| abstract_inverted_index.(DLNN-FR), | 165 |
| abstract_inverted_index.Chiojdului | 157 |
| abstract_inverted_index.Geographic | 47 |
| abstract_inverted_index.accuracies | 252 |
| abstract_inverted_index.algorithm, | 234 |
| abstract_inverted_index.attributed | 231 |
| abstract_inverted_index.evaluation | 17 |
| abstract_inverted_index.highlights | 310 |
| abstract_inverted_index.importance | 7 |
| abstract_inverted_index.locations. | 140 |
| abstract_inverted_index.monitoring | 15 |
| abstract_inverted_index.performant | 265 |
| abstract_inverted_index.positioned | 94 |
| abstract_inverted_index.predictors | 133 |
| abstract_inverted_index.procedure, | 247 |
| abstract_inverted_index.processes. | 99 |
| abstract_inverted_index.torrential | 85, 98 |
| abstract_inverted_index.validating | 117 |
| abstract_inverted_index.validation | 309 |
| abstract_inverted_index.(DLNN-WOE), | 172 |
| abstract_inverted_index.(DLNN-WOE). | 258 |
| abstract_inverted_index.Alternating | 173, 179 |
| abstract_inverted_index.Flash-Flood | 151, 271 |
| abstract_inverted_index.flash-flood | 31, 132, 285 |
| abstract_inverted_index.information | 41, 128 |
| abstract_inverted_index.specificity | 222 |
| abstract_inverted_index.statistical | 192 |
| abstract_inverted_index.FFPIDLNN-WOE | 314 |
| abstract_inverted_index.Sensitivity, | 198 |
| abstract_inverted_index.application, | 80 |
| abstract_inverted_index.performances | 187 |
| abstract_inverted_index.Informational | 48 |
| abstract_inverted_index.characterized | 316 |
| abstract_inverted_index.Characteristic | 304 |
| abstract_inverted_index.susceptibility | 21, 286 |
| abstract_inverted_index.Trees–Weights | 181 |
| abstract_inverted_index.high-resolution | 73 |
| abstract_inverted_index.Network–Weights | 169 |
| abstract_inverted_index.Trees–Frequency | 175 |
| abstract_inverted_index.Network–Frequency | 163 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| corresponding_author_ids | https://openalex.org/A5042425451, https://openalex.org/A5063208791 |
| countries_distinct_count | 5 |
| institutions_distinct_count | 9 |
| corresponding_institution_ids | https://openalex.org/I141445968, https://openalex.org/I1516879 |
| citation_normalized_percentile.value | 0.97758209 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |