Flat-Lattice-CNN: A model for Chinese medical-named-entity recognition Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1371/journal.pone.0331464
Background In the field of internet-based healthcare, the complexity of pathology features across various disciplines, coupled with the lack of medical training among most patients, results in medical named entities in doctor patient dialogue texts exhibiting long and multiword syntactic patterns, posing new challenges to named-entity recognition algorithms. Methods To address the issue mentioned above, in this study we integrate Convolutional Neural Networks (CNNs) of different dilation rates on top of Flat-Lattice architecture to construct the Flat-Lattice-CNN model. This model not only considers the semantic information of characters and words, as well as their absolute and relative positional information, but also extracts multiple-token co-occurrence relationship features among characters/words spanning different distances to improve the recognition accuracy of long medical-named entities. Results Experimental results show an improved performance in the task of recognizing medical-named entities on all evaluation datasets, especially on CTDD with a 2.3% increase in F1 score. The proposed Flat-Lattice-CNN model effectively addresses the challenges posed by long and multiword syntactic patterns in medical-named entities, offering improved recognition accuracy and demonstrating the potential for enhancing medical-named-entity recognition in internet-based healthcare dialogues.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1371/journal.pone.0331464
- OA Status
- gold
- References
- 22
- OpenAlex ID
- https://openalex.org/W4414343324
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414343324Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1371/journal.pone.0331464Digital Object Identifier
- Title
-
Flat-Lattice-CNN: A model for Chinese medical-named-entity recognitionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-18Full publication date if available
- Authors
-
Shanshan Wang, Zhang Kun-yuan, Ao LiuList of authors in order
- Landing page
-
https://doi.org/10.1371/journal.pone.0331464Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1371/journal.pone.0331464Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
22Number of works referenced by this work
Full payload
| id | https://openalex.org/W4414343324 |
|---|---|
| doi | https://doi.org/10.1371/journal.pone.0331464 |
| ids.doi | https://doi.org/10.1371/journal.pone.0331464 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40966234 |
| ids.openalex | https://openalex.org/W4414343324 |
| fwci | 0.0 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000465 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Algorithms |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D002681 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | China |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D020407 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Internet |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D016571 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Neural Networks, Computer |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D012660 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Semantics |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D008490 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Medical Informatics |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D000465 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Algorithms |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D002681 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | China |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D020407 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Internet |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D016571 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Neural Networks, Computer |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D012660 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Semantics |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D008490 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Medical Informatics |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D000465 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Algorithms |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D002681 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | China |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D020407 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Internet |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D016571 |
| mesh[15].is_major_topic | True |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Neural Networks, Computer |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D012660 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Semantics |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D008490 |
| mesh[17].is_major_topic | True |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Medical Informatics |
| type | article |
| title | Flat-Lattice-CNN: A model for Chinese medical-named-entity recognition |
| biblio.issue | 9 |
| biblio.volume | 20 |
| biblio.last_page | e0331464 |
| biblio.first_page | e0331464 |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9987999796867371 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| topics[2].id | https://openalex.org/T11710 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9962999820709229 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Biomedical Text Mining and Ontologies |
| is_xpac | False |
| apc_list.value | 1805 |
| apc_list.currency | USD |
| apc_list.value_usd | 1805 |
| apc_paid.value | 1805 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1805 |
| language | en |
| locations[0].id | doi:10.1371/journal.pone.0331464 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S202381698 |
| locations[0].source.issn | 1932-6203 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1932-6203 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | PLoS ONE |
| locations[0].source.host_organization | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_name | Public Library of Science |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_lineage_names | Public Library of Science |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | PLOS One |
| locations[0].landing_page_url | https://doi.org/10.1371/journal.pone.0331464 |
| locations[1].id | pmid:40966234 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | PloS one |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40966234 |
| locations[2].id | pmh:oai:doaj.org/article:ce6f4c4abd8444cd9560b7b5aa5632e3 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | PLoS ONE, Vol 20, Iss 9, p e0331464 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/ce6f4c4abd8444cd9560b7b5aa5632e3 |
| locations[3].id | pmh:oai:europepmc.org:11255041 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12445539 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5107923313 |
| authorships[0].author.orcid | https://orcid.org/0009-0009-4710-1830 |
| authorships[0].author.display_name | Shanshan Wang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210102412 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Economics and Management, Yan'an University, Yan'an, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210102412 |
| authorships[0].institutions[0].ror | https://ror.org/01dyr7034 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210102412 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Yan'an University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shanshan Wang |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | School of Economics and Management, Yan'an University, Yan'an, China |
| authorships[1].author.id | https://openalex.org/A5076376921 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Zhang Kun-yuan |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I2722730 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Computer Science, Inner Mongolia University, Hohhot, China |
| authorships[1].institutions[0].id | https://openalex.org/I2722730 |
| authorships[1].institutions[0].ror | https://ror.org/0106qb496 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I2722730 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Inner Mongolia University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kunyuan Zhang |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | College of Computer Science, Inner Mongolia University, Hohhot, China |
| authorships[2].author.id | https://openalex.org/A5007984042 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3387-4145 |
| authorships[2].author.display_name | Ao Liu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210102412 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Mathematics and Computer Science, Yan'an University, Yan'an, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210102412 |
| authorships[2].institutions[0].ror | https://ror.org/01dyr7034 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210102412 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Yan'an University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Ao Liu |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | School of Mathematics and Computer Science, Yan'an University, Yan'an, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1371/journal.pone.0331464 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Flat-Lattice-CNN: A model for Chinese medical-named-entity recognition |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1371/journal.pone.0331464 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S202381698 |
| best_oa_location.source.issn | 1932-6203 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1932-6203 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | PLoS ONE |
| best_oa_location.source.host_organization | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_name | Public Library of Science |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_lineage_names | Public Library of Science |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | PLOS One |
| best_oa_location.landing_page_url | https://doi.org/10.1371/journal.pone.0331464 |
| primary_location.id | doi:10.1371/journal.pone.0331464 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S202381698 |
| primary_location.source.issn | 1932-6203 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1932-6203 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | PLoS ONE |
| primary_location.source.host_organization | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_name | Public Library of Science |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_lineage_names | Public Library of Science |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | PLOS One |
| primary_location.landing_page_url | https://doi.org/10.1371/journal.pone.0331464 |
| publication_date | 2025-09-18 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4386967664, https://openalex.org/W4391847874, https://openalex.org/W4388728789, https://openalex.org/W3034379414, https://openalex.org/W2769387903, https://openalex.org/W2962904552, https://openalex.org/W3023337184, https://openalex.org/W4387809899, https://openalex.org/W3176489198, https://openalex.org/W3035448883, https://openalex.org/W4312065988, https://openalex.org/W4401338109, https://openalex.org/W2963354094, https://openalex.org/W4226470037, https://openalex.org/W3175562427, https://openalex.org/W2976444281, https://openalex.org/W2147880316, https://openalex.org/W2194775991, https://openalex.org/W2971019153, https://openalex.org/W4385245566, https://openalex.org/W3176023514, https://openalex.org/W2250521169 |
| referenced_works_count | 22 |
| abstract_inverted_index.a | 142 |
| abstract_inverted_index.F1 | 146 |
| abstract_inverted_index.In | 1 |
| abstract_inverted_index.To | 49 |
| abstract_inverted_index.an | 124 |
| abstract_inverted_index.as | 90, 92 |
| abstract_inverted_index.by | 157 |
| abstract_inverted_index.in | 26, 30, 55, 127, 145, 163, 178 |
| abstract_inverted_index.of | 4, 9, 19, 64, 70, 86, 116, 130 |
| abstract_inverted_index.on | 68, 134, 139 |
| abstract_inverted_index.to | 44, 73, 111 |
| abstract_inverted_index.we | 58 |
| abstract_inverted_index.The | 148 |
| abstract_inverted_index.all | 135 |
| abstract_inverted_index.and | 37, 88, 95, 159, 170 |
| abstract_inverted_index.but | 99 |
| abstract_inverted_index.for | 174 |
| abstract_inverted_index.new | 42 |
| abstract_inverted_index.not | 80 |
| abstract_inverted_index.the | 2, 7, 17, 51, 75, 83, 113, 128, 154, 172 |
| abstract_inverted_index.top | 69 |
| abstract_inverted_index.2.3% | 143 |
| abstract_inverted_index.CTDD | 140 |
| abstract_inverted_index.This | 78 |
| abstract_inverted_index.also | 100 |
| abstract_inverted_index.lack | 18 |
| abstract_inverted_index.long | 36, 117, 158 |
| abstract_inverted_index.most | 23 |
| abstract_inverted_index.only | 81 |
| abstract_inverted_index.show | 123 |
| abstract_inverted_index.task | 129 |
| abstract_inverted_index.this | 56 |
| abstract_inverted_index.well | 91 |
| abstract_inverted_index.with | 16, 141 |
| abstract_inverted_index.among | 22, 106 |
| abstract_inverted_index.issue | 52 |
| abstract_inverted_index.model | 79, 151 |
| abstract_inverted_index.named | 28 |
| abstract_inverted_index.posed | 156 |
| abstract_inverted_index.rates | 67 |
| abstract_inverted_index.study | 57 |
| abstract_inverted_index.texts | 34 |
| abstract_inverted_index.their | 93 |
| abstract_inverted_index.(CNNs) | 63 |
| abstract_inverted_index.Neural | 61 |
| abstract_inverted_index.above, | 54 |
| abstract_inverted_index.across | 12 |
| abstract_inverted_index.doctor | 31 |
| abstract_inverted_index.model. | 77 |
| abstract_inverted_index.posing | 41 |
| abstract_inverted_index.score. | 147 |
| abstract_inverted_index.words, | 89 |
| abstract_inverted_index.field | 3 |
| abstract_inverted_index.Methods | 48 |
| abstract_inverted_index.Results | 120 |
| abstract_inverted_index.address | 50 |
| abstract_inverted_index.coupled | 15 |
| abstract_inverted_index.improve | 112 |
| abstract_inverted_index.medical | 20, 27 |
| abstract_inverted_index.patient | 32 |
| abstract_inverted_index.results | 25, 122 |
| abstract_inverted_index.various | 13 |
| abstract_inverted_index.Networks | 62 |
| abstract_inverted_index.absolute | 94 |
| abstract_inverted_index.accuracy | 115, 169 |
| abstract_inverted_index.dialogue | 33 |
| abstract_inverted_index.dilation | 66 |
| abstract_inverted_index.entities | 29, 133 |
| abstract_inverted_index.extracts | 101 |
| abstract_inverted_index.features | 11, 105 |
| abstract_inverted_index.improved | 125, 167 |
| abstract_inverted_index.increase | 144 |
| abstract_inverted_index.patterns | 162 |
| abstract_inverted_index.proposed | 149 |
| abstract_inverted_index.relative | 96 |
| abstract_inverted_index.semantic | 84 |
| abstract_inverted_index.spanning | 108 |
| abstract_inverted_index.training | 21 |
| abstract_inverted_index.addresses | 153 |
| abstract_inverted_index.considers | 82 |
| abstract_inverted_index.construct | 74 |
| abstract_inverted_index.datasets, | 137 |
| abstract_inverted_index.distances | 110 |
| abstract_inverted_index.enhancing | 175 |
| abstract_inverted_index.entities, | 165 |
| abstract_inverted_index.entities. | 119 |
| abstract_inverted_index.integrate | 59 |
| abstract_inverted_index.mentioned | 53 |
| abstract_inverted_index.multiword | 38, 160 |
| abstract_inverted_index.offering | 166 |
| abstract_inverted_index.pathology | 10 |
| abstract_inverted_index.patients, | 24 |
| abstract_inverted_index.patterns, | 40 |
| abstract_inverted_index.potential | 173 |
| abstract_inverted_index.syntactic | 39, 161 |
| abstract_inverted_index.Background | 0 |
| abstract_inverted_index.challenges | 43, 155 |
| abstract_inverted_index.characters | 87 |
| abstract_inverted_index.complexity | 8 |
| abstract_inverted_index.dialogues. | 181 |
| abstract_inverted_index.different | 65, 109 |
| abstract_inverted_index.especially | 138 |
| abstract_inverted_index.evaluation | 136 |
| abstract_inverted_index.exhibiting | 35 |
| abstract_inverted_index.healthcare | 180 |
| abstract_inverted_index.positional | 97 |
| abstract_inverted_index.algorithms. | 47 |
| abstract_inverted_index.healthcare, | 6 |
| abstract_inverted_index.information | 85 |
| abstract_inverted_index.performance | 126 |
| abstract_inverted_index.recognition | 46, 114, 168, 177 |
| abstract_inverted_index.recognizing | 131 |
| abstract_inverted_index.Experimental | 121 |
| abstract_inverted_index.Flat-Lattice | 71 |
| abstract_inverted_index.architecture | 72 |
| abstract_inverted_index.disciplines, | 14 |
| abstract_inverted_index.effectively | 152 |
| abstract_inverted_index.information, | 98 |
| abstract_inverted_index.named-entity | 45 |
| abstract_inverted_index.relationship | 104 |
| abstract_inverted_index.Convolutional | 60 |
| abstract_inverted_index.co-occurrence | 103 |
| abstract_inverted_index.demonstrating | 171 |
| abstract_inverted_index.medical-named | 118, 132, 164 |
| abstract_inverted_index.internet-based | 5, 179 |
| abstract_inverted_index.multiple-token | 102 |
| abstract_inverted_index.Flat-Lattice-CNN | 76, 150 |
| abstract_inverted_index.characters/words | 107 |
| abstract_inverted_index.medical-named-entity | 176 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5076376921, https://openalex.org/A5107923313, https://openalex.org/A5007984042 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I2722730, https://openalex.org/I4210102412 |
| citation_normalized_percentile.value | 0.1948643 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |