Flaw characterization using inversion of eddy current response and the effect of filters and scan resolution Article Swipe
YOU?
·
· 2016
· Open Access
·
· DOI: https://doi.org/10.1063/1.4940558
The objective of this work is to expand eddy current inversion methods to enable estimation of flaw dimensions and orientations for data collected using a variety of scan resolutions and filter configurations. Prior work [1, 2] has demonstrated the capability of applying inverse methods to unfiltered, high-fidelity, automated eddy current data. This has shown advantages over a simple amplitude-based analysis of the data. However, to apply this approach to data collected using standard depot inspection settings, additional algorithms must be developed. In addition to including a high-pass filter, standard depot surface inspections often involve a part rotating at a constant angular velocity while a probe moves along a linear path. To expand the current inversion capabilities, two options were investigated. The first option involves re-sampling and filtering the forward model prior to inversion. The second option focuses on post-processing the flaw signal to a) effectively remove or minimize the effect of the filter and b) re-sample the data to have a pre-determined, uniform sample-point spacing. To validate the developed algorithms, data were collected by rotating a part while sampling along a linear path, and a 20 Hz high-pass filter was applied. The complete set of inversion algorithms was then used, and the resulting estimates of flaw length, depth, width, and orientation were in good agreement with the corresponding estimates determined using the original, high-fidelity, unfiltered data.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1063/1.4940558
- https://aip.scitation.org/doi/pdf/10.1063/1.4940558
- OA Status
- bronze
- Cited By
- 5
- References
- 7
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2329638249
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2329638249Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1063/1.4940558Digital Object Identifier
- Title
-
Flaw characterization using inversion of eddy current response and the effect of filters and scan resolutionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2016Year of publication
- Publication date
-
2016-01-01Full publication date if available
- Authors
-
Erin K. Oneida, Eric B. Shell, John C. Aldrin, Harold A. Sabbagh, Elias H. Sabbagh, R. Kim Murphy, Siamack Mazdiyasni, Eric A. LindgrenList of authors in order
- Landing page
-
https://doi.org/10.1063/1.4940558Publisher landing page
- PDF URL
-
https://aip.scitation.org/doi/pdf/10.1063/1.4940558Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://aip.scitation.org/doi/pdf/10.1063/1.4940558Direct OA link when available
- Concepts
-
Inversion (geology), Algorithm, Filter (signal processing), Computer science, Fidelity, Sampling (signal processing), Inverse problem, Mathematics, Geology, Computer vision, Telecommunications, Mathematical analysis, Paleontology, Structural basinTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 1, 2019: 1, 2017: 1, 2016: 2Per-year citation counts (last 5 years)
- References (count)
-
7Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2329638249 |
|---|---|
| doi | https://doi.org/10.1063/1.4940558 |
| ids.doi | https://doi.org/10.1063/1.4940558 |
| ids.mag | 2329638249 |
| ids.openalex | https://openalex.org/W2329638249 |
| fwci | 0.97381795 |
| type | article |
| title | Flaw characterization using inversion of eddy current response and the effect of filters and scan resolution |
| biblio.issue | |
| biblio.volume | 1706 |
| biblio.last_page | 090021 |
| biblio.first_page | 090021 |
| topics[0].id | https://openalex.org/T12169 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2210 |
| topics[0].subfield.display_name | Mechanical Engineering |
| topics[0].display_name | Non-Destructive Testing Techniques |
| topics[1].id | https://openalex.org/T10834 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9980999827384949 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2210 |
| topics[1].subfield.display_name | Mechanical Engineering |
| topics[1].display_name | Welding Techniques and Residual Stresses |
| topics[2].id | https://openalex.org/T10662 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9979000091552734 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2211 |
| topics[2].subfield.display_name | Mechanics of Materials |
| topics[2].display_name | Ultrasonics and Acoustic Wave Propagation |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C1893757 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7237093448638916 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3653001 |
| concepts[0].display_name | Inversion (geology) |
| concepts[1].id | https://openalex.org/C11413529 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6209807991981506 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[1].display_name | Algorithm |
| concepts[2].id | https://openalex.org/C106131492 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5754831433296204 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[2].display_name | Filter (signal processing) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5024175643920898 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C2776459999 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4955254793167114 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2119376 |
| concepts[4].display_name | Fidelity |
| concepts[5].id | https://openalex.org/C140779682 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4582615792751312 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q210868 |
| concepts[5].display_name | Sampling (signal processing) |
| concepts[6].id | https://openalex.org/C135252773 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4524116516113281 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1567213 |
| concepts[6].display_name | Inverse problem |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.23774543404579163 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C127313418 |
| concepts[8].level | 0 |
| concepts[8].score | 0.15092182159423828 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[8].display_name | Geology |
| concepts[9].id | https://openalex.org/C31972630 |
| concepts[9].level | 1 |
| concepts[9].score | 0.15049540996551514 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[9].display_name | Computer vision |
| concepts[10].id | https://openalex.org/C76155785 |
| concepts[10].level | 1 |
| concepts[10].score | 0.1140577495098114 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[10].display_name | Telecommunications |
| concepts[11].id | https://openalex.org/C134306372 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0993553102016449 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[11].display_name | Mathematical analysis |
| concepts[12].id | https://openalex.org/C151730666 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[12].display_name | Paleontology |
| concepts[13].id | https://openalex.org/C109007969 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q749565 |
| concepts[13].display_name | Structural basin |
| keywords[0].id | https://openalex.org/keywords/inversion |
| keywords[0].score | 0.7237093448638916 |
| keywords[0].display_name | Inversion (geology) |
| keywords[1].id | https://openalex.org/keywords/algorithm |
| keywords[1].score | 0.6209807991981506 |
| keywords[1].display_name | Algorithm |
| keywords[2].id | https://openalex.org/keywords/filter |
| keywords[2].score | 0.5754831433296204 |
| keywords[2].display_name | Filter (signal processing) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5024175643920898 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/fidelity |
| keywords[4].score | 0.4955254793167114 |
| keywords[4].display_name | Fidelity |
| keywords[5].id | https://openalex.org/keywords/sampling |
| keywords[5].score | 0.4582615792751312 |
| keywords[5].display_name | Sampling (signal processing) |
| keywords[6].id | https://openalex.org/keywords/inverse-problem |
| keywords[6].score | 0.4524116516113281 |
| keywords[6].display_name | Inverse problem |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.23774543404579163 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/geology |
| keywords[8].score | 0.15092182159423828 |
| keywords[8].display_name | Geology |
| keywords[9].id | https://openalex.org/keywords/computer-vision |
| keywords[9].score | 0.15049540996551514 |
| keywords[9].display_name | Computer vision |
| keywords[10].id | https://openalex.org/keywords/telecommunications |
| keywords[10].score | 0.1140577495098114 |
| keywords[10].display_name | Telecommunications |
| keywords[11].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[11].score | 0.0993553102016449 |
| keywords[11].display_name | Mathematical analysis |
| language | en |
| locations[0].id | doi:10.1063/1.4940558 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764696622 |
| locations[0].source.issn | 0094-243X, 1551-7616, 1935-0465 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0094-243X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | AIP conference proceedings |
| locations[0].source.host_organization | https://openalex.org/P4310320257 |
| locations[0].source.host_organization_name | American Institute of Physics |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320257 |
| locations[0].source.host_organization_lineage_names | American Institute of Physics |
| locations[0].license | |
| locations[0].pdf_url | https://aip.scitation.org/doi/pdf/10.1063/1.4940558 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | AIP Conference Proceedings |
| locations[0].landing_page_url | https://doi.org/10.1063/1.4940558 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5022014004 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Erin K. Oneida |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I144472018 |
| authorships[0].affiliations[0].raw_affiliation_string | Wyle Laboratories, Dayton, OH 45440, USA |
| authorships[0].institutions[0].id | https://openalex.org/I144472018 |
| authorships[0].institutions[0].ror | https://ror.org/02zeryz43 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I144472018 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Wyle (United States) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Erin K. Oneida |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Wyle Laboratories, Dayton, OH 45440, USA |
| authorships[1].author.id | https://openalex.org/A5086692312 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Eric B. Shell |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I144472018 |
| authorships[1].affiliations[0].raw_affiliation_string | Wyle Laboratories, Dayton, OH 45440, USA |
| authorships[1].institutions[0].id | https://openalex.org/I144472018 |
| authorships[1].institutions[0].ror | https://ror.org/02zeryz43 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I144472018 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Wyle (United States) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Eric B. Shell |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Wyle Laboratories, Dayton, OH 45440, USA |
| authorships[2].author.id | https://openalex.org/A5113802748 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | John C. Aldrin |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I183918463 |
| authorships[2].affiliations[0].raw_affiliation_string | Computational Tools, Gurnee, IL 60031, USA |
| authorships[2].institutions[0].id | https://openalex.org/I183918463 |
| authorships[2].institutions[0].ror | https://ror.org/004cdt922 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I183918463 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Illinois Tool Works (United States) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | John C. Aldrin |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Computational Tools, Gurnee, IL 60031, USA |
| authorships[3].author.id | https://openalex.org/A5108365254 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Harold A. Sabbagh |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210161642 |
| authorships[3].affiliations[0].raw_affiliation_string | Victor Technologies LLC, Bloomington, IN 47401, USA |
| authorships[3].institutions[0].id | https://openalex.org/I4210161642 |
| authorships[3].institutions[0].ror | https://ror.org/052fns920 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210161642 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Victor Technologies (United States) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Harold A. Sabbagh |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Victor Technologies LLC, Bloomington, IN 47401, USA |
| authorships[4].author.id | https://openalex.org/A5045480360 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Elias H. Sabbagh |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210161642 |
| authorships[4].affiliations[0].raw_affiliation_string | Victor Technologies LLC, Bloomington, IN 47401, USA |
| authorships[4].institutions[0].id | https://openalex.org/I4210161642 |
| authorships[4].institutions[0].ror | https://ror.org/052fns920 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210161642 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Victor Technologies (United States) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Elias H. Sabbagh |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Victor Technologies LLC, Bloomington, IN 47401, USA |
| authorships[5].author.id | https://openalex.org/A5103959697 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | R. Kim Murphy |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210161642 |
| authorships[5].affiliations[0].raw_affiliation_string | Victor Technologies LLC, Bloomington, IN 47401, USA |
| authorships[5].institutions[0].id | https://openalex.org/I4210161642 |
| authorships[5].institutions[0].ror | https://ror.org/052fns920 |
| authorships[5].institutions[0].type | company |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210161642 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Victor Technologies (United States) |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | R. Kim Murphy |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Victor Technologies LLC, Bloomington, IN 47401, USA |
| authorships[6].author.id | https://openalex.org/A5014337284 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Siamack Mazdiyasni |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I1280414376 |
| authorships[6].affiliations[0].raw_affiliation_string | Air Force Research Laboratory (AFRL/RXCA), Wright-Patterson AFB, OH 45433, USA |
| authorships[6].institutions[0].id | https://openalex.org/I1280414376 |
| authorships[6].institutions[0].ror | https://ror.org/02e2egq70 |
| authorships[6].institutions[0].type | facility |
| authorships[6].institutions[0].lineage | https://openalex.org/I1280414376, https://openalex.org/I1330347796, https://openalex.org/I4210102105, https://openalex.org/I4389425425 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | United States Air Force Research Laboratory |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Siamack Mazdiyasni |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Air Force Research Laboratory (AFRL/RXCA), Wright-Patterson AFB, OH 45433, USA |
| authorships[7].author.id | https://openalex.org/A5010602786 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-2940-651X |
| authorships[7].author.display_name | Eric A. Lindgren |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I1280414376 |
| authorships[7].affiliations[0].raw_affiliation_string | Air Force Research Laboratory (AFRL/RXCA), Wright-Patterson AFB, OH 45433, USA |
| authorships[7].institutions[0].id | https://openalex.org/I1280414376 |
| authorships[7].institutions[0].ror | https://ror.org/02e2egq70 |
| authorships[7].institutions[0].type | facility |
| authorships[7].institutions[0].lineage | https://openalex.org/I1280414376, https://openalex.org/I1330347796, https://openalex.org/I4210102105, https://openalex.org/I4389425425 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | United States Air Force Research Laboratory |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Eric A. Lindgren |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Air Force Research Laboratory (AFRL/RXCA), Wright-Patterson AFB, OH 45433, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://aip.scitation.org/doi/pdf/10.1063/1.4940558 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Flaw characterization using inversion of eddy current response and the effect of filters and scan resolution |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12169 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2210 |
| primary_topic.subfield.display_name | Mechanical Engineering |
| primary_topic.display_name | Non-Destructive Testing Techniques |
| related_works | https://openalex.org/W2381850946, https://openalex.org/W4380449851, https://openalex.org/W3125091513, https://openalex.org/W4318832338, https://openalex.org/W4248383205, https://openalex.org/W1919390113, https://openalex.org/W4234745530, https://openalex.org/W2146383839, https://openalex.org/W2231829109, https://openalex.org/W2916591301 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2019 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2017 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2016 |
| counts_by_year[3].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1063/1.4940558 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764696622 |
| best_oa_location.source.issn | 0094-243X, 1551-7616, 1935-0465 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0094-243X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | AIP conference proceedings |
| best_oa_location.source.host_organization | https://openalex.org/P4310320257 |
| best_oa_location.source.host_organization_name | American Institute of Physics |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320257 |
| best_oa_location.source.host_organization_lineage_names | American Institute of Physics |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://aip.scitation.org/doi/pdf/10.1063/1.4940558 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | AIP Conference Proceedings |
| best_oa_location.landing_page_url | https://doi.org/10.1063/1.4940558 |
| primary_location.id | doi:10.1063/1.4940558 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764696622 |
| primary_location.source.issn | 0094-243X, 1551-7616, 1935-0465 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0094-243X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | AIP conference proceedings |
| primary_location.source.host_organization | https://openalex.org/P4310320257 |
| primary_location.source.host_organization_name | American Institute of Physics |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320257 |
| primary_location.source.host_organization_lineage_names | American Institute of Physics |
| primary_location.license | |
| primary_location.pdf_url | https://aip.scitation.org/doi/pdf/10.1063/1.4940558 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | AIP Conference Proceedings |
| primary_location.landing_page_url | https://doi.org/10.1063/1.4940558 |
| publication_date | 2016-01-01 |
| publication_year | 2016 |
| referenced_works | https://openalex.org/W2070787758, https://openalex.org/W2024911749, https://openalex.org/W1664160910, https://openalex.org/W2085030979, https://openalex.org/W2490326448, https://openalex.org/W6602171695, https://openalex.org/W2618527992 |
| referenced_works_count | 7 |
| abstract_inverted_index.a | 24, 56, 85, 94, 98, 103, 107, 160, 175, 180, 184 |
| abstract_inverted_index.20 | 185 |
| abstract_inverted_index.2] | 35 |
| abstract_inverted_index.Hz | 186 |
| abstract_inverted_index.In | 81 |
| abstract_inverted_index.To | 110, 165 |
| abstract_inverted_index.a) | 143 |
| abstract_inverted_index.at | 97 |
| abstract_inverted_index.b) | 154 |
| abstract_inverted_index.be | 79 |
| abstract_inverted_index.by | 173 |
| abstract_inverted_index.in | 212 |
| abstract_inverted_index.is | 5 |
| abstract_inverted_index.of | 2, 15, 26, 40, 60, 150, 194, 204 |
| abstract_inverted_index.on | 137 |
| abstract_inverted_index.or | 146 |
| abstract_inverted_index.to | 6, 12, 44, 64, 68, 83, 131, 142, 158 |
| abstract_inverted_index.The | 0, 120, 133, 191 |
| abstract_inverted_index.[1, | 34 |
| abstract_inverted_index.and | 18, 29, 125, 153, 183, 200, 209 |
| abstract_inverted_index.for | 20 |
| abstract_inverted_index.has | 36, 52 |
| abstract_inverted_index.set | 193 |
| abstract_inverted_index.the | 38, 61, 112, 127, 139, 148, 151, 156, 167, 201, 216, 221 |
| abstract_inverted_index.two | 116 |
| abstract_inverted_index.was | 189, 197 |
| abstract_inverted_index.This | 51 |
| abstract_inverted_index.data | 21, 69, 157, 170 |
| abstract_inverted_index.eddy | 8, 48 |
| abstract_inverted_index.flaw | 16, 140, 205 |
| abstract_inverted_index.good | 213 |
| abstract_inverted_index.have | 159 |
| abstract_inverted_index.must | 78 |
| abstract_inverted_index.over | 55 |
| abstract_inverted_index.part | 95, 176 |
| abstract_inverted_index.scan | 27 |
| abstract_inverted_index.then | 198 |
| abstract_inverted_index.this | 3, 66 |
| abstract_inverted_index.were | 118, 171, 211 |
| abstract_inverted_index.with | 215 |
| abstract_inverted_index.work | 4, 33 |
| abstract_inverted_index.Prior | 32 |
| abstract_inverted_index.along | 106, 179 |
| abstract_inverted_index.apply | 65 |
| abstract_inverted_index.data. | 50, 62, 225 |
| abstract_inverted_index.depot | 73, 89 |
| abstract_inverted_index.first | 121 |
| abstract_inverted_index.model | 129 |
| abstract_inverted_index.moves | 105 |
| abstract_inverted_index.often | 92 |
| abstract_inverted_index.path, | 182 |
| abstract_inverted_index.path. | 109 |
| abstract_inverted_index.prior | 130 |
| abstract_inverted_index.probe | 104 |
| abstract_inverted_index.shown | 53 |
| abstract_inverted_index.used, | 199 |
| abstract_inverted_index.using | 23, 71, 220 |
| abstract_inverted_index.while | 102, 177 |
| abstract_inverted_index.depth, | 207 |
| abstract_inverted_index.effect | 149 |
| abstract_inverted_index.enable | 13 |
| abstract_inverted_index.expand | 7, 111 |
| abstract_inverted_index.filter | 30, 152, 188 |
| abstract_inverted_index.linear | 108, 181 |
| abstract_inverted_index.option | 122, 135 |
| abstract_inverted_index.remove | 145 |
| abstract_inverted_index.second | 134 |
| abstract_inverted_index.signal | 141 |
| abstract_inverted_index.simple | 57 |
| abstract_inverted_index.width, | 208 |
| abstract_inverted_index.angular | 100 |
| abstract_inverted_index.current | 9, 49, 113 |
| abstract_inverted_index.filter, | 87 |
| abstract_inverted_index.focuses | 136 |
| abstract_inverted_index.forward | 128 |
| abstract_inverted_index.inverse | 42 |
| abstract_inverted_index.involve | 93 |
| abstract_inverted_index.length, | 206 |
| abstract_inverted_index.methods | 11, 43 |
| abstract_inverted_index.options | 117 |
| abstract_inverted_index.surface | 90 |
| abstract_inverted_index.uniform | 162 |
| abstract_inverted_index.variety | 25 |
| abstract_inverted_index.However, | 63 |
| abstract_inverted_index.addition | 82 |
| abstract_inverted_index.analysis | 59 |
| abstract_inverted_index.applied. | 190 |
| abstract_inverted_index.applying | 41 |
| abstract_inverted_index.approach | 67 |
| abstract_inverted_index.complete | 192 |
| abstract_inverted_index.constant | 99 |
| abstract_inverted_index.involves | 123 |
| abstract_inverted_index.minimize | 147 |
| abstract_inverted_index.rotating | 96, 174 |
| abstract_inverted_index.sampling | 178 |
| abstract_inverted_index.spacing. | 164 |
| abstract_inverted_index.standard | 72, 88 |
| abstract_inverted_index.validate | 166 |
| abstract_inverted_index.velocity | 101 |
| abstract_inverted_index.agreement | 214 |
| abstract_inverted_index.automated | 47 |
| abstract_inverted_index.collected | 22, 70, 172 |
| abstract_inverted_index.developed | 168 |
| abstract_inverted_index.estimates | 203, 218 |
| abstract_inverted_index.filtering | 126 |
| abstract_inverted_index.high-pass | 86, 187 |
| abstract_inverted_index.including | 84 |
| abstract_inverted_index.inversion | 10, 114, 195 |
| abstract_inverted_index.objective | 1 |
| abstract_inverted_index.original, | 222 |
| abstract_inverted_index.re-sample | 155 |
| abstract_inverted_index.resulting | 202 |
| abstract_inverted_index.settings, | 75 |
| abstract_inverted_index.additional | 76 |
| abstract_inverted_index.advantages | 54 |
| abstract_inverted_index.algorithms | 77, 196 |
| abstract_inverted_index.capability | 39 |
| abstract_inverted_index.determined | 219 |
| abstract_inverted_index.developed. | 80 |
| abstract_inverted_index.dimensions | 17 |
| abstract_inverted_index.estimation | 14 |
| abstract_inverted_index.inspection | 74 |
| abstract_inverted_index.inversion. | 132 |
| abstract_inverted_index.unfiltered | 224 |
| abstract_inverted_index.algorithms, | 169 |
| abstract_inverted_index.effectively | 144 |
| abstract_inverted_index.inspections | 91 |
| abstract_inverted_index.orientation | 210 |
| abstract_inverted_index.re-sampling | 124 |
| abstract_inverted_index.resolutions | 28 |
| abstract_inverted_index.unfiltered, | 45 |
| abstract_inverted_index.demonstrated | 37 |
| abstract_inverted_index.orientations | 19 |
| abstract_inverted_index.sample-point | 163 |
| abstract_inverted_index.capabilities, | 115 |
| abstract_inverted_index.corresponding | 217 |
| abstract_inverted_index.investigated. | 119 |
| abstract_inverted_index.high-fidelity, | 46, 223 |
| abstract_inverted_index.amplitude-based | 58 |
| abstract_inverted_index.configurations. | 31 |
| abstract_inverted_index.post-processing | 138 |
| abstract_inverted_index.pre-determined, | 161 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.77422355 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |