FLEXIS: FLEXible Frequent Subgraph Mining using Maximal Independent Sets Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2404.01585
Frequent Subgraph Mining (FSM) is the process of identifying common subgraph patterns that surpass a predefined frequency threshold. While FSM is widely applicable in fields like bioinformatics, chemical analysis, and social network anomaly detection, its execution remains time-consuming and complex. This complexity stems from the need to recognize high-frequency subgraphs and ascertain if they exceed the set threshold. Current approaches to identifying these patterns often rely on edge or vertex extension methods. However, these strategies can introduce redundancies and cause increased latency. To address these challenges, this paper introduces a novel approach for identifying potential k-vertex patterns by combining two frequently observed (k - 1)-vertex patterns. This method optimizes the breadth-]first search, which allows for quicker search termination based on vertices count and support value. Another challenge in FSM is the validation of the presumed pattern against a specific threshold. Existing metrics, such as Maximum Independent Set (MIS) and Minimum Node Image (MNI), either demand significant computational time or risk overestimating pattern counts. Our innovative approach aligns with the MIS and identifies independent subgraphs. Through the "Maximal Independent Set" metric, this paper offers an efficient solution that minimizes latency and provides users with control over pattern overlap. Through extensive experimentation, our proposed method achieves an average of 10.58x speedup when compared to GraMi and an average 3x speedup when compared to T-FSM
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2404.01585
- https://arxiv.org/pdf/2404.01585
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393928614
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393928614Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2404.01585Digital Object Identifier
- Title
-
FLEXIS: FLEXible Frequent Subgraph Mining using Maximal Independent SetsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-04-02Full publication date if available
- Authors
-
Akshit Sharma, Sam Reinher, Dinesh Kumar Mehta, Bo WuList of authors in order
- Landing page
-
https://arxiv.org/abs/2404.01585Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2404.01585Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2404.01585Direct OA link when available
- Concepts
-
Computer science, Data miningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393928614 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2404.01585 |
| ids.doi | https://doi.org/10.48550/arxiv.2404.01585 |
| ids.openalex | https://openalex.org/W4393928614 |
| fwci | |
| type | preprint |
| title | FLEXIS: FLEXible Frequent Subgraph Mining using Maximal Independent Sets |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10538 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9904999732971191 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Data Mining Algorithms and Applications |
| topics[1].id | https://openalex.org/T11063 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9750999808311462 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Rough Sets and Fuzzy Logic |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.4752499759197235 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C124101348 |
| concepts[1].level | 1 |
| concepts[1].score | 0.4190901815891266 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[1].display_name | Data mining |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.4752499759197235 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/data-mining |
| keywords[1].score | 0.4190901815891266 |
| keywords[1].display_name | Data mining |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2404.01585 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2404.01585 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2404.01585 |
| locations[1].id | doi:10.48550/arxiv.2404.01585 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2404.01585 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101171739 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Akshit Sharma |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sharma, Akshit |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5094581151 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Sam Reinher |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Reinher, Sam |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5058003383 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4908-7437 |
| authorships[2].author.display_name | Dinesh Kumar Mehta |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mehta, Dinesh |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5025476506 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2861-2979 |
| authorships[3].author.display_name | Bo Wu |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Wu, Bo |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2404.01585 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | FLEXIS: FLEXible Frequent Subgraph Mining using Maximal Independent Sets |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10538 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9904999732971191 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Data Mining Algorithms and Applications |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2478288626, https://openalex.org/W4391913857, https://openalex.org/W2350741829, https://openalex.org/W2530322880 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2404.01585 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2404.01585 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2404.01585 |
| primary_location.id | pmh:oai:arXiv.org:2404.01585 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2404.01585 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2404.01585 |
| publication_date | 2024-04-02 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.- | 103 |
| abstract_inverted_index.a | 14, 89, 137 |
| abstract_inverted_index.(k | 102 |
| abstract_inverted_index.3x | 216 |
| abstract_inverted_index.To | 82 |
| abstract_inverted_index.an | 183, 204, 214 |
| abstract_inverted_index.as | 143 |
| abstract_inverted_index.by | 97 |
| abstract_inverted_index.if | 52 |
| abstract_inverted_index.in | 23, 127 |
| abstract_inverted_index.is | 4, 20, 129 |
| abstract_inverted_index.of | 7, 132, 206 |
| abstract_inverted_index.on | 66, 119 |
| abstract_inverted_index.or | 68, 158 |
| abstract_inverted_index.to | 46, 60, 211, 220 |
| abstract_inverted_index.FSM | 19, 128 |
| abstract_inverted_index.MIS | 169 |
| abstract_inverted_index.Our | 163 |
| abstract_inverted_index.Set | 146 |
| abstract_inverted_index.and | 29, 38, 50, 78, 122, 148, 170, 189, 213 |
| abstract_inverted_index.can | 75 |
| abstract_inverted_index.for | 92, 114 |
| abstract_inverted_index.its | 34 |
| abstract_inverted_index.our | 200 |
| abstract_inverted_index.set | 56 |
| abstract_inverted_index.the | 5, 44, 55, 109, 130, 133, 168, 175 |
| abstract_inverted_index.two | 99 |
| abstract_inverted_index.Node | 150 |
| abstract_inverted_index.Set" | 178 |
| abstract_inverted_index.This | 40, 106 |
| abstract_inverted_index.edge | 67 |
| abstract_inverted_index.from | 43 |
| abstract_inverted_index.like | 25 |
| abstract_inverted_index.need | 45 |
| abstract_inverted_index.over | 194 |
| abstract_inverted_index.rely | 65 |
| abstract_inverted_index.risk | 159 |
| abstract_inverted_index.such | 142 |
| abstract_inverted_index.that | 12, 186 |
| abstract_inverted_index.they | 53 |
| abstract_inverted_index.this | 86, 180 |
| abstract_inverted_index.time | 157 |
| abstract_inverted_index.when | 209, 218 |
| abstract_inverted_index.with | 167, 192 |
| abstract_inverted_index.(FSM) | 3 |
| abstract_inverted_index.(MIS) | 147 |
| abstract_inverted_index.GraMi | 212 |
| abstract_inverted_index.Image | 151 |
| abstract_inverted_index.T-FSM | 221 |
| abstract_inverted_index.While | 18 |
| abstract_inverted_index.based | 118 |
| abstract_inverted_index.cause | 79 |
| abstract_inverted_index.count | 121 |
| abstract_inverted_index.novel | 90 |
| abstract_inverted_index.often | 64 |
| abstract_inverted_index.paper | 87, 181 |
| abstract_inverted_index.stems | 42 |
| abstract_inverted_index.these | 62, 73, 84 |
| abstract_inverted_index.users | 191 |
| abstract_inverted_index.which | 112 |
| abstract_inverted_index.(MNI), | 152 |
| abstract_inverted_index.10.58x | 207 |
| abstract_inverted_index.Mining | 2 |
| abstract_inverted_index.aligns | 166 |
| abstract_inverted_index.allows | 113 |
| abstract_inverted_index.common | 9 |
| abstract_inverted_index.demand | 154 |
| abstract_inverted_index.either | 153 |
| abstract_inverted_index.exceed | 54 |
| abstract_inverted_index.fields | 24 |
| abstract_inverted_index.method | 107, 202 |
| abstract_inverted_index.offers | 182 |
| abstract_inverted_index.search | 116 |
| abstract_inverted_index.social | 30 |
| abstract_inverted_index.value. | 124 |
| abstract_inverted_index.vertex | 69 |
| abstract_inverted_index.widely | 21 |
| abstract_inverted_index.Another | 125 |
| abstract_inverted_index.Current | 58 |
| abstract_inverted_index.Maximum | 144 |
| abstract_inverted_index.Minimum | 149 |
| abstract_inverted_index.Through | 174, 197 |
| abstract_inverted_index.address | 83 |
| abstract_inverted_index.against | 136 |
| abstract_inverted_index.anomaly | 32 |
| abstract_inverted_index.average | 205, 215 |
| abstract_inverted_index.control | 193 |
| abstract_inverted_index.counts. | 162 |
| abstract_inverted_index.latency | 188 |
| abstract_inverted_index.metric, | 179 |
| abstract_inverted_index.network | 31 |
| abstract_inverted_index.pattern | 135, 161, 195 |
| abstract_inverted_index.process | 6 |
| abstract_inverted_index.quicker | 115 |
| abstract_inverted_index.remains | 36 |
| abstract_inverted_index.search, | 111 |
| abstract_inverted_index.speedup | 208, 217 |
| abstract_inverted_index.support | 123 |
| abstract_inverted_index.surpass | 13 |
| abstract_inverted_index."Maximal | 176 |
| abstract_inverted_index.Existing | 140 |
| abstract_inverted_index.Frequent | 0 |
| abstract_inverted_index.However, | 72 |
| abstract_inverted_index.Subgraph | 1 |
| abstract_inverted_index.achieves | 203 |
| abstract_inverted_index.approach | 91, 165 |
| abstract_inverted_index.chemical | 27 |
| abstract_inverted_index.compared | 210, 219 |
| abstract_inverted_index.complex. | 39 |
| abstract_inverted_index.k-vertex | 95 |
| abstract_inverted_index.latency. | 81 |
| abstract_inverted_index.methods. | 71 |
| abstract_inverted_index.metrics, | 141 |
| abstract_inverted_index.observed | 101 |
| abstract_inverted_index.overlap. | 196 |
| abstract_inverted_index.patterns | 11, 63, 96 |
| abstract_inverted_index.presumed | 134 |
| abstract_inverted_index.proposed | 201 |
| abstract_inverted_index.provides | 190 |
| abstract_inverted_index.solution | 185 |
| abstract_inverted_index.specific | 138 |
| abstract_inverted_index.subgraph | 10 |
| abstract_inverted_index.vertices | 120 |
| abstract_inverted_index.1)-vertex | 104 |
| abstract_inverted_index.analysis, | 28 |
| abstract_inverted_index.ascertain | 51 |
| abstract_inverted_index.challenge | 126 |
| abstract_inverted_index.combining | 98 |
| abstract_inverted_index.efficient | 184 |
| abstract_inverted_index.execution | 35 |
| abstract_inverted_index.extension | 70 |
| abstract_inverted_index.extensive | 198 |
| abstract_inverted_index.frequency | 16 |
| abstract_inverted_index.increased | 80 |
| abstract_inverted_index.introduce | 76 |
| abstract_inverted_index.minimizes | 187 |
| abstract_inverted_index.optimizes | 108 |
| abstract_inverted_index.patterns. | 105 |
| abstract_inverted_index.potential | 94 |
| abstract_inverted_index.recognize | 47 |
| abstract_inverted_index.subgraphs | 49 |
| abstract_inverted_index.applicable | 22 |
| abstract_inverted_index.approaches | 59 |
| abstract_inverted_index.complexity | 41 |
| abstract_inverted_index.detection, | 33 |
| abstract_inverted_index.frequently | 100 |
| abstract_inverted_index.identifies | 171 |
| abstract_inverted_index.innovative | 164 |
| abstract_inverted_index.introduces | 88 |
| abstract_inverted_index.predefined | 15 |
| abstract_inverted_index.strategies | 74 |
| abstract_inverted_index.subgraphs. | 173 |
| abstract_inverted_index.threshold. | 17, 57, 139 |
| abstract_inverted_index.validation | 131 |
| abstract_inverted_index.Independent | 145, 177 |
| abstract_inverted_index.challenges, | 85 |
| abstract_inverted_index.identifying | 8, 61, 93 |
| abstract_inverted_index.independent | 172 |
| abstract_inverted_index.significant | 155 |
| abstract_inverted_index.termination | 117 |
| abstract_inverted_index.redundancies | 77 |
| abstract_inverted_index.computational | 156 |
| abstract_inverted_index.breadth-]first | 110 |
| abstract_inverted_index.high-frequency | 48 |
| abstract_inverted_index.overestimating | 160 |
| abstract_inverted_index.time-consuming | 37 |
| abstract_inverted_index.bioinformatics, | 26 |
| abstract_inverted_index.experimentation, | 199 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |