Flow control of three-dimensional cylinders transitioning to turbulence via multi-agent reinforcement learning Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2405.17210
Designing active-flow-control (AFC) strategies for three-dimensional (3D) bluff bodies is a challenging task with critical industrial implications. In this study we explore the potential of discovering novel control strategies for drag reduction using deep reinforcement learning. We introduce a high-dimensional AFC setup on a 3D cylinder, considering Reynolds numbers ($Re_D$) from $100$ to $400$, which is a range including the transition to 3D wake instabilities. The setup involves multiple zero-net-mass-flux jets positioned on the top and bottom surfaces, aligned into two slots. The method relies on coupling the computational-fluid-dynamics solver with a multi-agent reinforcement-learning (MARL) framework based on the proximal-policy-optimization algorithm. MARL offers several advantages: it exploits local invariance, adaptable control across geometries, facilitates transfer learning and cross-application of agents, and results in a significant training speedup. \rev{For instance, our results demonstrate $16\%$ drag reduction for $Re_D=400$, outperforming classical periodic control, which yields up to $6\%$ reduction.} A proper-orthogonal-decomposition (POD) analysis at $Re_D=400$ reveals that the DRL control results in a stable wake structure with longer recirculation bubble. To the authors' knowledge, the present MARL-based framework represents the first time where training is conducted in 3D cylinders. This breakthrough paves the way for conducting AFC on progressively more complex turbulent-flow configurations.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2405.17210
- https://arxiv.org/pdf/2405.17210
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4399144144
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4399144144Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2405.17210Digital Object Identifier
- Title
-
Flow control of three-dimensional cylinders transitioning to turbulence via multi-agent reinforcement learningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-27Full publication date if available
- Authors
-
P. M. Suárez, Francisco Alcántara-Ávila, J. Rabault, Arnau Miró, Bernat Font, O. Lehmkuhl, R. VinuesaList of authors in order
- Landing page
-
https://arxiv.org/abs/2405.17210Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2405.17210Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2405.17210Direct OA link when available
- Concepts
-
Turbulence, Reinforcement learning, Reinforcement, Flow (mathematics), Flow control (data), Computer science, Control (management), Mechanics, Physics, Artificial intelligence, Engineering, Structural engineering, TelecommunicationsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4399144144 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2405.17210 |
| ids.doi | https://doi.org/10.48550/arxiv.2405.17210 |
| ids.openalex | https://openalex.org/W4399144144 |
| fwci | |
| type | preprint |
| title | Flow control of three-dimensional cylinders transitioning to turbulence via multi-agent reinforcement learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10524 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9884999990463257 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Traffic control and management |
| topics[1].id | https://openalex.org/T10360 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9287999868392944 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2206 |
| topics[1].subfield.display_name | Computational Mechanics |
| topics[1].display_name | Fluid Dynamics and Turbulent Flows |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C196558001 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7537970542907715 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q190132 |
| concepts[0].display_name | Turbulence |
| concepts[1].id | https://openalex.org/C97541855 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6633090972900391 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[1].display_name | Reinforcement learning |
| concepts[2].id | https://openalex.org/C67203356 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6090332865715027 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1321905 |
| concepts[2].display_name | Reinforcement |
| concepts[3].id | https://openalex.org/C38349280 |
| concepts[3].level | 2 |
| concepts[3].score | 0.595313549041748 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1434290 |
| concepts[3].display_name | Flow (mathematics) |
| concepts[4].id | https://openalex.org/C186766456 |
| concepts[4].level | 2 |
| concepts[4].score | 0.46362853050231934 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q612457 |
| concepts[4].display_name | Flow control (data) |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.4607487916946411 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C2775924081 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4533793032169342 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[6].display_name | Control (management) |
| concepts[7].id | https://openalex.org/C57879066 |
| concepts[7].level | 1 |
| concepts[7].score | 0.2679566740989685 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q41217 |
| concepts[7].display_name | Mechanics |
| concepts[8].id | https://openalex.org/C121332964 |
| concepts[8].level | 0 |
| concepts[8].score | 0.23932906985282898 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[8].display_name | Physics |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.23805561661720276 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.21659904718399048 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C66938386 |
| concepts[11].level | 1 |
| concepts[11].score | 0.1475427746772766 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q633538 |
| concepts[11].display_name | Structural engineering |
| concepts[12].id | https://openalex.org/C76155785 |
| concepts[12].level | 1 |
| concepts[12].score | 0.08448737859725952 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[12].display_name | Telecommunications |
| keywords[0].id | https://openalex.org/keywords/turbulence |
| keywords[0].score | 0.7537970542907715 |
| keywords[0].display_name | Turbulence |
| keywords[1].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[1].score | 0.6633090972900391 |
| keywords[1].display_name | Reinforcement learning |
| keywords[2].id | https://openalex.org/keywords/reinforcement |
| keywords[2].score | 0.6090332865715027 |
| keywords[2].display_name | Reinforcement |
| keywords[3].id | https://openalex.org/keywords/flow |
| keywords[3].score | 0.595313549041748 |
| keywords[3].display_name | Flow (mathematics) |
| keywords[4].id | https://openalex.org/keywords/flow-control |
| keywords[4].score | 0.46362853050231934 |
| keywords[4].display_name | Flow control (data) |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.4607487916946411 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/control |
| keywords[6].score | 0.4533793032169342 |
| keywords[6].display_name | Control (management) |
| keywords[7].id | https://openalex.org/keywords/mechanics |
| keywords[7].score | 0.2679566740989685 |
| keywords[7].display_name | Mechanics |
| keywords[8].id | https://openalex.org/keywords/physics |
| keywords[8].score | 0.23932906985282898 |
| keywords[8].display_name | Physics |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.23805561661720276 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.21659904718399048 |
| keywords[10].display_name | Engineering |
| keywords[11].id | https://openalex.org/keywords/structural-engineering |
| keywords[11].score | 0.1475427746772766 |
| keywords[11].display_name | Structural engineering |
| keywords[12].id | https://openalex.org/keywords/telecommunications |
| keywords[12].score | 0.08448737859725952 |
| keywords[12].display_name | Telecommunications |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2405.17210 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2405.17210 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2405.17210 |
| locations[1].id | pmh:oai:DiVA.org:kth-356270 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400013 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Publications (Konstfack University of Arts, Crafts, and Design) |
| locations[1].source.host_organization | https://openalex.org/I218177685 |
| locations[1].source.host_organization_name | University College of Arts Crafts and Design |
| locations[1].source.host_organization_lineage | https://openalex.org/I218177685 |
| locations[1].license | other-oa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-356270 |
| locations[2].id | doi:10.48550/arxiv.2405.17210 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.2405.17210 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5072145355 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8968-8849 |
| authorships[0].author.display_name | P. M. Suárez |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Suárez, P. |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5001332814 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0704-6100 |
| authorships[1].author.display_name | Francisco Alcántara-Ávila |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Álcantara-Ávila, F. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5065418211 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | J. Rabault |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Rabault, J. |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5060305519 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2772-6050 |
| authorships[3].author.display_name | Arnau Miró |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Miró, A. |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5031672395 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2136-3068 |
| authorships[4].author.display_name | Bernat Font |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Font, B. |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5051192251 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2670-1871 |
| authorships[5].author.display_name | O. Lehmkuhl |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Lehmkuhl, O. |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5015591463 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | R. Vinuesa |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Vinuesa, R. |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2405.17210 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-05-30T00:00:00 |
| display_name | Flow control of three-dimensional cylinders transitioning to turbulence via multi-agent reinforcement learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10524 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9884999990463257 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Traffic control and management |
| related_works | https://openalex.org/W2920061524, https://openalex.org/W4310083477, https://openalex.org/W2328553770, https://openalex.org/W1977959518, https://openalex.org/W2038908348, https://openalex.org/W2107890255, https://openalex.org/W2106552856, https://openalex.org/W2145821588, https://openalex.org/W2086122291, https://openalex.org/W2035729975 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:2405.17210 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2405.17210 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2405.17210 |
| primary_location.id | pmh:oai:arXiv.org:2405.17210 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2405.17210 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2405.17210 |
| publication_date | 2024-05-27 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 147 |
| abstract_inverted_index.a | 10, 38, 43, 56, 91, 123, 160 |
| abstract_inverted_index.3D | 44, 62, 185 |
| abstract_inverted_index.In | 17 |
| abstract_inverted_index.To | 168 |
| abstract_inverted_index.We | 36 |
| abstract_inverted_index.at | 151 |
| abstract_inverted_index.in | 122, 159, 184 |
| abstract_inverted_index.is | 9, 55, 182 |
| abstract_inverted_index.it | 105 |
| abstract_inverted_index.of | 24, 118 |
| abstract_inverted_index.on | 42, 72, 85, 97, 195 |
| abstract_inverted_index.to | 52, 61, 144 |
| abstract_inverted_index.up | 143 |
| abstract_inverted_index.we | 20 |
| abstract_inverted_index.AFC | 40, 194 |
| abstract_inverted_index.DRL | 156 |
| abstract_inverted_index.The | 65, 82 |
| abstract_inverted_index.and | 75, 116, 120 |
| abstract_inverted_index.for | 4, 29, 135, 192 |
| abstract_inverted_index.our | 129 |
| abstract_inverted_index.the | 22, 59, 73, 87, 98, 155, 169, 172, 177, 190 |
| abstract_inverted_index.top | 74 |
| abstract_inverted_index.two | 80 |
| abstract_inverted_index.way | 191 |
| abstract_inverted_index.(3D) | 6 |
| abstract_inverted_index.MARL | 101 |
| abstract_inverted_index.This | 187 |
| abstract_inverted_index.deep | 33 |
| abstract_inverted_index.drag | 30, 133 |
| abstract_inverted_index.from | 50 |
| abstract_inverted_index.into | 79 |
| abstract_inverted_index.jets | 70 |
| abstract_inverted_index.more | 197 |
| abstract_inverted_index.task | 12 |
| abstract_inverted_index.that | 154 |
| abstract_inverted_index.this | 18 |
| abstract_inverted_index.time | 179 |
| abstract_inverted_index.wake | 63, 162 |
| abstract_inverted_index.with | 13, 90, 164 |
| abstract_inverted_index.$100$ | 51 |
| abstract_inverted_index.$6\%$ | 145 |
| abstract_inverted_index.(AFC) | 2 |
| abstract_inverted_index.(POD) | 149 |
| abstract_inverted_index.based | 96 |
| abstract_inverted_index.bluff | 7 |
| abstract_inverted_index.first | 178 |
| abstract_inverted_index.local | 107 |
| abstract_inverted_index.novel | 26 |
| abstract_inverted_index.paves | 189 |
| abstract_inverted_index.range | 57 |
| abstract_inverted_index.setup | 41, 66 |
| abstract_inverted_index.study | 19 |
| abstract_inverted_index.using | 32 |
| abstract_inverted_index.where | 180 |
| abstract_inverted_index.which | 54, 141 |
| abstract_inverted_index.$16\%$ | 132 |
| abstract_inverted_index.$400$, | 53 |
| abstract_inverted_index.(MARL) | 94 |
| abstract_inverted_index.across | 111 |
| abstract_inverted_index.bodies | 8 |
| abstract_inverted_index.bottom | 76 |
| abstract_inverted_index.longer | 165 |
| abstract_inverted_index.method | 83 |
| abstract_inverted_index.offers | 102 |
| abstract_inverted_index.relies | 84 |
| abstract_inverted_index.slots. | 81 |
| abstract_inverted_index.solver | 89 |
| abstract_inverted_index.stable | 161 |
| abstract_inverted_index.yields | 142 |
| abstract_inverted_index.agents, | 119 |
| abstract_inverted_index.aligned | 78 |
| abstract_inverted_index.bubble. | 167 |
| abstract_inverted_index.complex | 198 |
| abstract_inverted_index.control | 27, 110, 157 |
| abstract_inverted_index.explore | 21 |
| abstract_inverted_index.numbers | 48 |
| abstract_inverted_index.present | 173 |
| abstract_inverted_index.results | 121, 130, 158 |
| abstract_inverted_index.reveals | 153 |
| abstract_inverted_index.several | 103 |
| abstract_inverted_index.($Re_D$) | 49 |
| abstract_inverted_index.Reynolds | 47 |
| abstract_inverted_index.\rev{For | 127 |
| abstract_inverted_index.analysis | 150 |
| abstract_inverted_index.authors' | 170 |
| abstract_inverted_index.control, | 140 |
| abstract_inverted_index.coupling | 86 |
| abstract_inverted_index.critical | 14 |
| abstract_inverted_index.exploits | 106 |
| abstract_inverted_index.involves | 67 |
| abstract_inverted_index.learning | 115 |
| abstract_inverted_index.multiple | 68 |
| abstract_inverted_index.periodic | 139 |
| abstract_inverted_index.speedup. | 126 |
| abstract_inverted_index.training | 125, 181 |
| abstract_inverted_index.transfer | 114 |
| abstract_inverted_index.Designing | 0 |
| abstract_inverted_index.adaptable | 109 |
| abstract_inverted_index.classical | 138 |
| abstract_inverted_index.conducted | 183 |
| abstract_inverted_index.cylinder, | 45 |
| abstract_inverted_index.framework | 95, 175 |
| abstract_inverted_index.including | 58 |
| abstract_inverted_index.instance, | 128 |
| abstract_inverted_index.introduce | 37 |
| abstract_inverted_index.learning. | 35 |
| abstract_inverted_index.potential | 23 |
| abstract_inverted_index.reduction | 31, 134 |
| abstract_inverted_index.structure | 163 |
| abstract_inverted_index.surfaces, | 77 |
| abstract_inverted_index.$Re_D=400$ | 152 |
| abstract_inverted_index.MARL-based | 174 |
| abstract_inverted_index.algorithm. | 100 |
| abstract_inverted_index.conducting | 193 |
| abstract_inverted_index.cylinders. | 186 |
| abstract_inverted_index.industrial | 15 |
| abstract_inverted_index.knowledge, | 171 |
| abstract_inverted_index.positioned | 71 |
| abstract_inverted_index.represents | 176 |
| abstract_inverted_index.strategies | 3, 28 |
| abstract_inverted_index.transition | 60 |
| abstract_inverted_index.$Re_D=400$, | 136 |
| abstract_inverted_index.advantages: | 104 |
| abstract_inverted_index.challenging | 11 |
| abstract_inverted_index.considering | 46 |
| abstract_inverted_index.demonstrate | 131 |
| abstract_inverted_index.discovering | 25 |
| abstract_inverted_index.facilitates | 113 |
| abstract_inverted_index.geometries, | 112 |
| abstract_inverted_index.invariance, | 108 |
| abstract_inverted_index.multi-agent | 92 |
| abstract_inverted_index.reduction.} | 146 |
| abstract_inverted_index.significant | 124 |
| abstract_inverted_index.breakthrough | 188 |
| abstract_inverted_index.implications. | 16 |
| abstract_inverted_index.outperforming | 137 |
| abstract_inverted_index.progressively | 196 |
| abstract_inverted_index.recirculation | 166 |
| abstract_inverted_index.reinforcement | 34 |
| abstract_inverted_index.instabilities. | 64 |
| abstract_inverted_index.turbulent-flow | 199 |
| abstract_inverted_index.configurations. | 200 |
| abstract_inverted_index.high-dimensional | 39 |
| abstract_inverted_index.cross-application | 117 |
| abstract_inverted_index.three-dimensional | 5 |
| abstract_inverted_index.zero-net-mass-flux | 69 |
| abstract_inverted_index.active-flow-control | 1 |
| abstract_inverted_index.reinforcement-learning | 93 |
| abstract_inverted_index.computational-fluid-dynamics | 88 |
| abstract_inverted_index.proximal-policy-optimization | 99 |
| abstract_inverted_index.proper-orthogonal-decomposition | 148 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |