flowMC: Normalizing flow enhanced sampling package forprobabilistic inference in JAX Article Swipe
Kaze W. K. Wong
,
Marylou Gabrié
,
Daniel Foreman-Mackey
·
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.21105/joss.05021
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.21105/joss.05021
International audience
Related Topics
Concepts
Markov chain Monte Carlo
Metropolis–Hastings algorithm
Python (programming language)
Computer science
Bayesian inference
Leverage (statistics)
Inference
Markov chain
Algorithm
Posterior probability
Sampling (signal processing)
Bayesian probability
Kernel (algebra)
Mathematics
Machine learning
Artificial intelligence
Discrete mathematics
Operating system
Filter (signal processing)
Computer vision
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.21105/joss.05021
- https://joss.theoj.org/papers/10.21105/joss.05021.pdf
- OA Status
- diamond
- Cited By
- 22
- References
- 20
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4323656255
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4323656255Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21105/joss.05021Digital Object Identifier
- Title
-
flowMC: Normalizing flow enhanced sampling package forprobabilistic inference in JAXWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-03-09Full publication date if available
- Authors
-
Kaze W. K. Wong, Marylou Gabrié, Daniel Foreman-MackeyList of authors in order
- Landing page
-
https://doi.org/10.21105/joss.05021Publisher landing page
- PDF URL
-
https://joss.theoj.org/papers/10.21105/joss.05021.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://joss.theoj.org/papers/10.21105/joss.05021.pdfDirect OA link when available
- Concepts
-
Markov chain Monte Carlo, Metropolis–Hastings algorithm, Python (programming language), Computer science, Bayesian inference, Leverage (statistics), Inference, Markov chain, Algorithm, Posterior probability, Sampling (signal processing), Bayesian probability, Kernel (algebra), Mathematics, Machine learning, Artificial intelligence, Discrete mathematics, Operating system, Filter (signal processing), Computer visionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
22Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 12, 2024: 6, 2023: 3, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
20Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4323656255 |
|---|---|
| doi | https://doi.org/10.21105/joss.05021 |
| ids.doi | https://doi.org/10.21105/joss.05021 |
| ids.openalex | https://openalex.org/W4323656255 |
| fwci | 5.61974353 |
| type | article |
| title | flowMC: Normalizing flow enhanced sampling package forprobabilistic inference in JAX |
| biblio.issue | 83 |
| biblio.volume | 8 |
| biblio.last_page | 5021 |
| biblio.first_page | 5021 |
| topics[0].id | https://openalex.org/T12814 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9965999722480774 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Gaussian Processes and Bayesian Inference |
| topics[1].id | https://openalex.org/T12056 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9962000250816345 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Markov Chains and Monte Carlo Methods |
| topics[2].id | https://openalex.org/T10775 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9753000140190125 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Generative Adversarial Networks and Image Synthesis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C111350023 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8746848106384277 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1191869 |
| concepts[0].display_name | Markov chain Monte Carlo |
| concepts[1].id | https://openalex.org/C204693719 |
| concepts[1].level | 4 |
| concepts[1].score | 0.6553926467895508 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q910810 |
| concepts[1].display_name | Metropolis–Hastings algorithm |
| concepts[2].id | https://openalex.org/C519991488 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6281189918518066 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q28865 |
| concepts[2].display_name | Python (programming language) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5379031896591187 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C160234255 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5206581950187683 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q812535 |
| concepts[4].display_name | Bayesian inference |
| concepts[5].id | https://openalex.org/C153083717 |
| concepts[5].level | 2 |
| concepts[5].score | 0.500678539276123 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q6535263 |
| concepts[5].display_name | Leverage (statistics) |
| concepts[6].id | https://openalex.org/C2776214188 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5002920627593994 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[6].display_name | Inference |
| concepts[7].id | https://openalex.org/C98763669 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4980010986328125 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q176645 |
| concepts[7].display_name | Markov chain |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.47888630628585815 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| concepts[9].id | https://openalex.org/C57830394 |
| concepts[9].level | 3 |
| concepts[9].score | 0.47794249653816223 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q278079 |
| concepts[9].display_name | Posterior probability |
| concepts[10].id | https://openalex.org/C140779682 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4569265842437744 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q210868 |
| concepts[10].display_name | Sampling (signal processing) |
| concepts[11].id | https://openalex.org/C107673813 |
| concepts[11].level | 2 |
| concepts[11].score | 0.42615973949432373 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[11].display_name | Bayesian probability |
| concepts[12].id | https://openalex.org/C74193536 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4235230088233948 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q574844 |
| concepts[12].display_name | Kernel (algebra) |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.3764491677284241 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C119857082 |
| concepts[14].level | 1 |
| concepts[14].score | 0.2799226939678192 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[14].display_name | Machine learning |
| concepts[15].id | https://openalex.org/C154945302 |
| concepts[15].level | 1 |
| concepts[15].score | 0.2756904065608978 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[15].display_name | Artificial intelligence |
| concepts[16].id | https://openalex.org/C118615104 |
| concepts[16].level | 1 |
| concepts[16].score | 0.07967793941497803 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q121416 |
| concepts[16].display_name | Discrete mathematics |
| concepts[17].id | https://openalex.org/C111919701 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[17].display_name | Operating system |
| concepts[18].id | https://openalex.org/C106131492 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[18].display_name | Filter (signal processing) |
| concepts[19].id | https://openalex.org/C31972630 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[19].display_name | Computer vision |
| keywords[0].id | https://openalex.org/keywords/markov-chain-monte-carlo |
| keywords[0].score | 0.8746848106384277 |
| keywords[0].display_name | Markov chain Monte Carlo |
| keywords[1].id | https://openalex.org/keywords/metropolis–hastings-algorithm |
| keywords[1].score | 0.6553926467895508 |
| keywords[1].display_name | Metropolis–Hastings algorithm |
| keywords[2].id | https://openalex.org/keywords/python |
| keywords[2].score | 0.6281189918518066 |
| keywords[2].display_name | Python (programming language) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5379031896591187 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/bayesian-inference |
| keywords[4].score | 0.5206581950187683 |
| keywords[4].display_name | Bayesian inference |
| keywords[5].id | https://openalex.org/keywords/leverage |
| keywords[5].score | 0.500678539276123 |
| keywords[5].display_name | Leverage (statistics) |
| keywords[6].id | https://openalex.org/keywords/inference |
| keywords[6].score | 0.5002920627593994 |
| keywords[6].display_name | Inference |
| keywords[7].id | https://openalex.org/keywords/markov-chain |
| keywords[7].score | 0.4980010986328125 |
| keywords[7].display_name | Markov chain |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.47888630628585815 |
| keywords[8].display_name | Algorithm |
| keywords[9].id | https://openalex.org/keywords/posterior-probability |
| keywords[9].score | 0.47794249653816223 |
| keywords[9].display_name | Posterior probability |
| keywords[10].id | https://openalex.org/keywords/sampling |
| keywords[10].score | 0.4569265842437744 |
| keywords[10].display_name | Sampling (signal processing) |
| keywords[11].id | https://openalex.org/keywords/bayesian-probability |
| keywords[11].score | 0.42615973949432373 |
| keywords[11].display_name | Bayesian probability |
| keywords[12].id | https://openalex.org/keywords/kernel |
| keywords[12].score | 0.4235230088233948 |
| keywords[12].display_name | Kernel (algebra) |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.3764491677284241 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/machine-learning |
| keywords[14].score | 0.2799226939678192 |
| keywords[14].display_name | Machine learning |
| keywords[15].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[15].score | 0.2756904065608978 |
| keywords[15].display_name | Artificial intelligence |
| keywords[16].id | https://openalex.org/keywords/discrete-mathematics |
| keywords[16].score | 0.07967793941497803 |
| keywords[16].display_name | Discrete mathematics |
| language | en |
| locations[0].id | doi:10.21105/joss.05021 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210214273 |
| locations[0].source.issn | 2475-9066 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2475-9066 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | The Journal of Open Source Software |
| locations[0].source.host_organization | https://openalex.org/P4310315853 |
| locations[0].source.host_organization_name | Open Journals |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315853 |
| locations[0].source.host_organization_lineage_names | Open Journals |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://joss.theoj.org/papers/10.21105/joss.05021.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Open Source Software |
| locations[0].landing_page_url | https://doi.org/10.21105/joss.05021 |
| locations[1].id | pmh:oai:HAL:hal-04548811v1 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402512 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | HAL (Le Centre pour la Communication Scientifique Directe) |
| locations[1].source.host_organization | https://openalex.org/I1294671590 |
| locations[1].source.host_organization_name | Centre National de la Recherche Scientifique |
| locations[1].source.host_organization_lineage | https://openalex.org/I1294671590 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Journal articles |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Journal of Open Source Software, 2023, 8 (83), pp.5021. ⟨10.21105/joss.05021⟩ |
| locations[1].landing_page_url | https://hal.science/hal-04548811 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5078311510 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8432-7788 |
| authorships[0].author.display_name | Kaze W. K. Wong |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210153546, https://openalex.org/I4387153999 |
| authorships[0].affiliations[0].raw_affiliation_string | Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, US |
| authorships[0].institutions[0].id | https://openalex.org/I4387153999 |
| authorships[0].institutions[0].ror | https://ror.org/00sekdz59 |
| authorships[0].institutions[0].type | nonprofit |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210107338, https://openalex.org/I4387153999 |
| authorships[0].institutions[0].country_code | |
| authorships[0].institutions[0].display_name | Flatiron Institute |
| authorships[0].institutions[1].id | https://openalex.org/I4210153546 |
| authorships[0].institutions[1].ror | https://ror.org/0508h6p74 |
| authorships[0].institutions[1].type | company |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210153546 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | Flatiron Health (United States) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kaze W. K. Wong |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, US |
| authorships[1].author.id | https://openalex.org/A5001522727 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5989-1018 |
| authorships[1].author.display_name | Marylou Gabrié |
| authorships[1].countries | FR, US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I142476485 |
| authorships[1].affiliations[0].raw_affiliation_string | École Polytechnique, Palaiseau 91120, France |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I4210153546, https://openalex.org/I4387153999 |
| authorships[1].affiliations[1].raw_affiliation_string | Center for Computational Mathematics, Flatiron Institute, New York, NY 10010, US |
| authorships[1].institutions[0].id | https://openalex.org/I4387153999 |
| authorships[1].institutions[0].ror | https://ror.org/00sekdz59 |
| authorships[1].institutions[0].type | nonprofit |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210107338, https://openalex.org/I4387153999 |
| authorships[1].institutions[0].country_code | |
| authorships[1].institutions[0].display_name | Flatiron Institute |
| authorships[1].institutions[1].id | https://openalex.org/I142476485 |
| authorships[1].institutions[1].ror | https://ror.org/05hy3tk52 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I142476485, https://openalex.org/I4210145102 |
| authorships[1].institutions[1].country_code | FR |
| authorships[1].institutions[1].display_name | École Polytechnique |
| authorships[1].institutions[2].id | https://openalex.org/I4210153546 |
| authorships[1].institutions[2].ror | https://ror.org/0508h6p74 |
| authorships[1].institutions[2].type | company |
| authorships[1].institutions[2].lineage | https://openalex.org/I4210153546 |
| authorships[1].institutions[2].country_code | US |
| authorships[1].institutions[2].display_name | Flatiron Health (United States) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Marylou Gabrié |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Center for Computational Mathematics, Flatiron Institute, New York, NY 10010, US, École Polytechnique, Palaiseau 91120, France |
| authorships[2].author.id | https://openalex.org/A5043101946 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9328-5652 |
| authorships[2].author.display_name | Daniel Foreman-Mackey |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210153546, https://openalex.org/I4387153999 |
| authorships[2].affiliations[0].raw_affiliation_string | Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, US |
| authorships[2].institutions[0].id | https://openalex.org/I4387153999 |
| authorships[2].institutions[0].ror | https://ror.org/00sekdz59 |
| authorships[2].institutions[0].type | nonprofit |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210107338, https://openalex.org/I4387153999 |
| authorships[2].institutions[0].country_code | |
| authorships[2].institutions[0].display_name | Flatiron Institute |
| authorships[2].institutions[1].id | https://openalex.org/I4210153546 |
| authorships[2].institutions[1].ror | https://ror.org/0508h6p74 |
| authorships[2].institutions[1].type | company |
| authorships[2].institutions[1].lineage | https://openalex.org/I4210153546 |
| authorships[2].institutions[1].country_code | US |
| authorships[2].institutions[1].display_name | Flatiron Health (United States) |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Daniel Foreman-Mackey |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, US |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://joss.theoj.org/papers/10.21105/joss.05021.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | flowMC: Normalizing flow enhanced sampling package forprobabilistic inference in JAX |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12814 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9965999722480774 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Gaussian Processes and Bayesian Inference |
| related_works | https://openalex.org/W2956835927, https://openalex.org/W2392396032, https://openalex.org/W2071668645, https://openalex.org/W4250051631, https://openalex.org/W160986626, https://openalex.org/W2073412813, https://openalex.org/W4362705882, https://openalex.org/W4390532044, https://openalex.org/W217235565, https://openalex.org/W3087071515 |
| cited_by_count | 22 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 12 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 6 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.21105/joss.05021 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210214273 |
| best_oa_location.source.issn | 2475-9066 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2475-9066 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | The Journal of Open Source Software |
| best_oa_location.source.host_organization | https://openalex.org/P4310315853 |
| best_oa_location.source.host_organization_name | Open Journals |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315853 |
| best_oa_location.source.host_organization_lineage_names | Open Journals |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://joss.theoj.org/papers/10.21105/joss.05021.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Open Source Software |
| best_oa_location.landing_page_url | https://doi.org/10.21105/joss.05021 |
| primary_location.id | doi:10.21105/joss.05021 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210214273 |
| primary_location.source.issn | 2475-9066 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2475-9066 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | The Journal of Open Source Software |
| primary_location.source.host_organization | https://openalex.org/P4310315853 |
| primary_location.source.host_organization_name | Open Journals |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315853 |
| primary_location.source.host_organization_lineage_names | Open Journals |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://joss.theoj.org/papers/10.21105/joss.05021.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Open Source Software |
| primary_location.landing_page_url | https://doi.org/10.21105/joss.05021 |
| publication_date | 2023-03-09 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4214925787, https://openalex.org/W2920868047, https://openalex.org/W2941443959, https://openalex.org/W3186454526, https://openalex.org/W2992005611, https://openalex.org/W6770847983, https://openalex.org/W2135973421, https://openalex.org/W6755447188, https://openalex.org/W4292155219, https://openalex.org/W2169837720, https://openalex.org/W2138710913, https://openalex.org/W2140291117, https://openalex.org/W6631532416, https://openalex.org/W32980360, https://openalex.org/W2147632348, https://openalex.org/W1526098631, https://openalex.org/W2897613819, https://openalex.org/W3150807214, https://openalex.org/W4287074654, https://openalex.org/W3099467939 |
| referenced_works_count | 20 |
| abstract_inverted_index.audience | 1 |
| abstract_inverted_index.International | 0 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.95602659 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |