Fluid Dynamic DNNs for Reliable and Adaptive Distributed Inference on Edge Devices Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2401.08943
Distributed inference is a popular approach for efficient DNN inference at the edge. However, traditional Static and Dynamic DNNs are not distribution-friendly, causing system reliability and adaptability issues. In this paper, we introduce Fluid Dynamic DNNs (Fluid DyDNNs), tailored for distributed inference. Distinct from Static and Dynamic DNNs, Fluid DyDNNs utilize a novel nested incremental training algorithm to enable independent and combined operation of its sub-networks, enhancing system reliability and adaptability. Evaluation on embedded Arm CPUs with a DNN model and the MNIST dataset, shows that in scenarios of single device failure, Fluid DyDNNs ensure continued inference, whereas Static and Dynamic DNNs fail. When devices are fully operational, Fluid DyDNNs can operate in either a High-Accuracy mode and achieve comparable accuracy with Static DNNs, or in a High-Throughput mode and achieve 2.5x and 2x throughput compared with Static and Dynamic DNNs, respectively.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2401.08943
- https://arxiv.org/pdf/2401.08943
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391013212
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391013212Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2401.08943Digital Object Identifier
- Title
-
Fluid Dynamic DNNs for Reliable and Adaptive Distributed Inference on Edge DevicesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-17Full publication date if available
- Authors
-
Xun Lei, Mingyu Hu, Hengrui Zhao, Amit Kumar Singh, Jonathon Hare, Geoff V. MerrettList of authors in order
- Landing page
-
https://arxiv.org/abs/2401.08943Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2401.08943Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2401.08943Direct OA link when available
- Concepts
-
Inference, Computer science, Adaptability, MNIST database, Reliability (semiconductor), Throughput, Enhanced Data Rates for GSM Evolution, Distributed computing, Artificial intelligence, Artificial neural network, Wireless, Telecommunications, Biology, Physics, Power (physics), Ecology, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391013212 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2401.08943 |
| ids.doi | https://doi.org/10.48550/arxiv.2401.08943 |
| ids.openalex | https://openalex.org/W4391013212 |
| fwci | |
| type | preprint |
| title | Fluid Dynamic DNNs for Reliable and Adaptive Distributed Inference on Edge Devices |
| awards[0].id | https://openalex.org/G3496335909 |
| awards[0].funder_id | https://openalex.org/F4320334627 |
| awards[0].display_name | |
| awards[0].funder_award_id | EP/S030069/1 |
| awards[0].funder_display_name | Engineering and Physical Sciences Research Council |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12808 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9979000091552734 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Ferroelectric and Negative Capacitance Devices |
| topics[1].id | https://openalex.org/T10036 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9959999918937683 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Neural Network Applications |
| topics[2].id | https://openalex.org/T11689 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.993399977684021 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Adversarial Robustness in Machine Learning |
| funders[0].id | https://openalex.org/F4320334627 |
| funders[0].ror | https://ror.org/0439y7842 |
| funders[0].display_name | Engineering and Physical Sciences Research Council |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776214188 |
| concepts[0].level | 2 |
| concepts[0].score | 0.810631513595581 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[0].display_name | Inference |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7620360255241394 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C177606310 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7251570224761963 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5674297 |
| concepts[2].display_name | Adaptability |
| concepts[3].id | https://openalex.org/C190502265 |
| concepts[3].level | 3 |
| concepts[3].score | 0.655702531337738 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17069496 |
| concepts[3].display_name | MNIST database |
| concepts[4].id | https://openalex.org/C43214815 |
| concepts[4].level | 3 |
| concepts[4].score | 0.6340278387069702 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7310987 |
| concepts[4].display_name | Reliability (semiconductor) |
| concepts[5].id | https://openalex.org/C157764524 |
| concepts[5].level | 3 |
| concepts[5].score | 0.6301840543746948 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1383412 |
| concepts[5].display_name | Throughput |
| concepts[6].id | https://openalex.org/C162307627 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5558920502662659 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q204833 |
| concepts[6].display_name | Enhanced Data Rates for GSM Evolution |
| concepts[7].id | https://openalex.org/C120314980 |
| concepts[7].level | 1 |
| concepts[7].score | 0.40246230363845825 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[7].display_name | Distributed computing |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.23716211318969727 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C50644808 |
| concepts[9].level | 2 |
| concepts[9].score | 0.168609619140625 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[9].display_name | Artificial neural network |
| concepts[10].id | https://openalex.org/C555944384 |
| concepts[10].level | 2 |
| concepts[10].score | 0.10421326756477356 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q249 |
| concepts[10].display_name | Wireless |
| concepts[11].id | https://openalex.org/C76155785 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0751752257347107 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[11].display_name | Telecommunications |
| concepts[12].id | https://openalex.org/C86803240 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[12].display_name | Biology |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C163258240 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[14].display_name | Power (physics) |
| concepts[15].id | https://openalex.org/C18903297 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[15].display_name | Ecology |
| concepts[16].id | https://openalex.org/C62520636 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[16].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/inference |
| keywords[0].score | 0.810631513595581 |
| keywords[0].display_name | Inference |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7620360255241394 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/adaptability |
| keywords[2].score | 0.7251570224761963 |
| keywords[2].display_name | Adaptability |
| keywords[3].id | https://openalex.org/keywords/mnist-database |
| keywords[3].score | 0.655702531337738 |
| keywords[3].display_name | MNIST database |
| keywords[4].id | https://openalex.org/keywords/reliability |
| keywords[4].score | 0.6340278387069702 |
| keywords[4].display_name | Reliability (semiconductor) |
| keywords[5].id | https://openalex.org/keywords/throughput |
| keywords[5].score | 0.6301840543746948 |
| keywords[5].display_name | Throughput |
| keywords[6].id | https://openalex.org/keywords/enhanced-data-rates-for-gsm-evolution |
| keywords[6].score | 0.5558920502662659 |
| keywords[6].display_name | Enhanced Data Rates for GSM Evolution |
| keywords[7].id | https://openalex.org/keywords/distributed-computing |
| keywords[7].score | 0.40246230363845825 |
| keywords[7].display_name | Distributed computing |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.23716211318969727 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[9].score | 0.168609619140625 |
| keywords[9].display_name | Artificial neural network |
| keywords[10].id | https://openalex.org/keywords/wireless |
| keywords[10].score | 0.10421326756477356 |
| keywords[10].display_name | Wireless |
| keywords[11].id | https://openalex.org/keywords/telecommunications |
| keywords[11].score | 0.0751752257347107 |
| keywords[11].display_name | Telecommunications |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2401.08943 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2401.08943 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2401.08943 |
| locations[1].id | doi:10.48550/arxiv.2401.08943 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2401.08943 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5091490292 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5118-9294 |
| authorships[0].author.display_name | Xun Lei |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xun, Lei |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5038726794 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6895-8675 |
| authorships[1].author.display_name | Mingyu Hu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hu, Mingyu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5043717556 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6712-5823 |
| authorships[2].author.display_name | Hengrui Zhao |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhao, Hengrui |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100658269 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6869-5561 |
| authorships[3].author.display_name | Amit Kumar Singh |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Singh, Amit Kumar |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5067505586 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2921-4283 |
| authorships[4].author.display_name | Jonathon Hare |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Hare, Jonathon |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5001556143 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4980-3894 |
| authorships[5].author.display_name | Geoff V. Merrett |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Merrett, Geoff V. |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2401.08943 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Fluid Dynamic DNNs for Reliable and Adaptive Distributed Inference on Edge Devices |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12808 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9979000091552734 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Ferroelectric and Negative Capacitance Devices |
| related_works | https://openalex.org/W4386603768, https://openalex.org/W2950475743, https://openalex.org/W2886711096, https://openalex.org/W2750384547, https://openalex.org/W4380078352, https://openalex.org/W3046591097, https://openalex.org/W4389249638, https://openalex.org/W2733410219, https://openalex.org/W2734358244, https://openalex.org/W4283319738 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2401.08943 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2401.08943 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2401.08943 |
| primary_location.id | pmh:oai:arXiv.org:2401.08943 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2401.08943 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2401.08943 |
| publication_date | 2024-01-17 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 51, 77, 114, 126 |
| abstract_inverted_index.2x | 133 |
| abstract_inverted_index.In | 28 |
| abstract_inverted_index.at | 10 |
| abstract_inverted_index.in | 86, 112, 125 |
| abstract_inverted_index.is | 2 |
| abstract_inverted_index.of | 63, 88 |
| abstract_inverted_index.on | 72 |
| abstract_inverted_index.or | 124 |
| abstract_inverted_index.to | 57 |
| abstract_inverted_index.we | 31 |
| abstract_inverted_index.Arm | 74 |
| abstract_inverted_index.DNN | 8, 78 |
| abstract_inverted_index.and | 16, 25, 45, 60, 69, 80, 99, 117, 129, 132, 138 |
| abstract_inverted_index.are | 19, 105 |
| abstract_inverted_index.can | 110 |
| abstract_inverted_index.for | 6, 39 |
| abstract_inverted_index.its | 64 |
| abstract_inverted_index.not | 20 |
| abstract_inverted_index.the | 11, 81 |
| abstract_inverted_index.2.5x | 131 |
| abstract_inverted_index.CPUs | 75 |
| abstract_inverted_index.DNNs | 18, 35, 101 |
| abstract_inverted_index.When | 103 |
| abstract_inverted_index.from | 43 |
| abstract_inverted_index.mode | 116, 128 |
| abstract_inverted_index.that | 85 |
| abstract_inverted_index.this | 29 |
| abstract_inverted_index.with | 76, 121, 136 |
| abstract_inverted_index.DNNs, | 47, 123, 140 |
| abstract_inverted_index.Fluid | 33, 48, 92, 108 |
| abstract_inverted_index.MNIST | 82 |
| abstract_inverted_index.edge. | 12 |
| abstract_inverted_index.fail. | 102 |
| abstract_inverted_index.fully | 106 |
| abstract_inverted_index.model | 79 |
| abstract_inverted_index.novel | 52 |
| abstract_inverted_index.shows | 84 |
| abstract_inverted_index.(Fluid | 36 |
| abstract_inverted_index.DyDNNs | 49, 93, 109 |
| abstract_inverted_index.Static | 15, 44, 98, 122, 137 |
| abstract_inverted_index.device | 90 |
| abstract_inverted_index.either | 113 |
| abstract_inverted_index.enable | 58 |
| abstract_inverted_index.ensure | 94 |
| abstract_inverted_index.nested | 53 |
| abstract_inverted_index.paper, | 30 |
| abstract_inverted_index.single | 89 |
| abstract_inverted_index.system | 23, 67 |
| abstract_inverted_index.Dynamic | 17, 34, 46, 100, 139 |
| abstract_inverted_index.achieve | 118, 130 |
| abstract_inverted_index.causing | 22 |
| abstract_inverted_index.devices | 104 |
| abstract_inverted_index.issues. | 27 |
| abstract_inverted_index.operate | 111 |
| abstract_inverted_index.popular | 4 |
| abstract_inverted_index.utilize | 50 |
| abstract_inverted_index.whereas | 97 |
| abstract_inverted_index.Distinct | 42 |
| abstract_inverted_index.DyDNNs), | 37 |
| abstract_inverted_index.However, | 13 |
| abstract_inverted_index.accuracy | 120 |
| abstract_inverted_index.approach | 5 |
| abstract_inverted_index.combined | 61 |
| abstract_inverted_index.compared | 135 |
| abstract_inverted_index.dataset, | 83 |
| abstract_inverted_index.embedded | 73 |
| abstract_inverted_index.failure, | 91 |
| abstract_inverted_index.tailored | 38 |
| abstract_inverted_index.training | 55 |
| abstract_inverted_index.algorithm | 56 |
| abstract_inverted_index.continued | 95 |
| abstract_inverted_index.efficient | 7 |
| abstract_inverted_index.enhancing | 66 |
| abstract_inverted_index.inference | 1, 9 |
| abstract_inverted_index.introduce | 32 |
| abstract_inverted_index.operation | 62 |
| abstract_inverted_index.scenarios | 87 |
| abstract_inverted_index.Evaluation | 71 |
| abstract_inverted_index.comparable | 119 |
| abstract_inverted_index.inference, | 96 |
| abstract_inverted_index.inference. | 41 |
| abstract_inverted_index.throughput | 134 |
| abstract_inverted_index.Distributed | 0 |
| abstract_inverted_index.distributed | 40 |
| abstract_inverted_index.incremental | 54 |
| abstract_inverted_index.independent | 59 |
| abstract_inverted_index.reliability | 24, 68 |
| abstract_inverted_index.traditional | 14 |
| abstract_inverted_index.adaptability | 26 |
| abstract_inverted_index.operational, | 107 |
| abstract_inverted_index.High-Accuracy | 115 |
| abstract_inverted_index.adaptability. | 70 |
| abstract_inverted_index.respectively. | 141 |
| abstract_inverted_index.sub-networks, | 65 |
| abstract_inverted_index.High-Throughput | 127 |
| abstract_inverted_index.distribution-friendly, | 21 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |