Fluorescence image deconvolution microscopy via generative adversarial learning (FluoGAN) Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1088/1361-6420/acc889
We propose FluoGAN, an unsupervised hybrid approach combining the physical modelling of fluorescence microscopy timelapse acquisitions with a generative adversarial learning procedure for the problem of image deconvolution. Differently from standard approaches combining a least-square data term based on one (long-time exposure) image with sparsity-promoting regularisation terms, FluoGAN relies on a data term being the distributional distance between the fluctuating observed timelapse (short-time exposure images) and the generative model. Such distance is computed by adversarial training of two competing architectures: a physics-inspired generator simulating the fluctuating behaviour as a Poisson process of the observed images combined with blur and undersampling, and a standard convolutional discriminator network. FluoGAN is a fully unsupervised approach requiring only a fluctuating sequence of blurred, undersampled and noisy images of the sample of interest as input. It can be complemented with prior knowledge on the desired solution such as sparsity, non-negativity etc. After having described the main ideas behind FluoGAN, we formulate the corresponding optimisation problem and report several results on simulated and real phantoms used by microscopy engineers to quantitatively assess spatial resolution. The comparison of FluoGAN with state-of-the-art methodologies shows improved resolution, allowing for high-precision reconstructions of fine structures in challenging real Ostreopsis cf Ovata data. The FluoGAN code is available at: https://github.com/cmayeul/FluoGAN .
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1088/1361-6420/acc889
- OA Status
- hybrid
- References
- 32
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4297415831
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4297415831Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/1361-6420/acc889Digital Object Identifier
- Title
-
Fluorescence image deconvolution microscopy via generative adversarial learning (FluoGAN)Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-03-29Full publication date if available
- Authors
-
Mayeul Cachia, Vasiliki Stergiopoulou, Luca Calatroni, Sébastien Schaub, Laure Blanc-FéraudList of authors in order
- Landing page
-
https://doi.org/10.1088/1361-6420/acc889Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1088/1361-6420/acc889Direct OA link when available
- Concepts
-
Deconvolution, Fluorescence, Generative grammar, Microscopy, Fluorescence microscope, Artificial intelligence, Adversarial system, Computer science, Image (mathematics), Computer vision, Chemistry, Optics, Physics, AlgorithmTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
32Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4297415831 |
|---|---|
| doi | https://doi.org/10.1088/1361-6420/acc889 |
| ids.doi | https://doi.org/10.1088/1361-6420/acc889 |
| ids.openalex | https://openalex.org/W4297415831 |
| fwci | 0.0 |
| type | article |
| title | Fluorescence image deconvolution microscopy via generative adversarial learning (FluoGAN) |
| biblio.issue | 5 |
| biblio.volume | 39 |
| biblio.last_page | 054006 |
| biblio.first_page | 054006 |
| topics[0].id | https://openalex.org/T12859 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1304 |
| topics[0].subfield.display_name | Biophysics |
| topics[0].display_name | Cell Image Analysis Techniques |
| topics[1].id | https://openalex.org/T10540 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9975000023841858 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1304 |
| topics[1].subfield.display_name | Biophysics |
| topics[1].display_name | Advanced Fluorescence Microscopy Techniques |
| topics[2].id | https://openalex.org/T13114 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9886999726295471 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Image Processing Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C174576160 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6921894550323486 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1183700 |
| concepts[0].display_name | Deconvolution |
| concepts[1].id | https://openalex.org/C91881484 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6311343908309937 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q191807 |
| concepts[1].display_name | Fluorescence |
| concepts[2].id | https://openalex.org/C39890363 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5947015881538391 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[2].display_name | Generative grammar |
| concepts[3].id | https://openalex.org/C147080431 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5825214385986328 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1074953 |
| concepts[3].display_name | Microscopy |
| concepts[4].id | https://openalex.org/C169274487 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5641939043998718 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q840211 |
| concepts[4].display_name | Fluorescence microscope |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5407857894897461 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C37736160 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5116503834724426 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1801315 |
| concepts[6].display_name | Adversarial system |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.4735927879810333 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C115961682 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4380357265472412 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[8].display_name | Image (mathematics) |
| concepts[9].id | https://openalex.org/C31972630 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4158300757408142 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[9].display_name | Computer vision |
| concepts[10].id | https://openalex.org/C185592680 |
| concepts[10].level | 0 |
| concepts[10].score | 0.3543455898761749 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[10].display_name | Chemistry |
| concepts[11].id | https://openalex.org/C120665830 |
| concepts[11].level | 1 |
| concepts[11].score | 0.24229386448860168 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[11].display_name | Optics |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.19197675585746765 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C11413529 |
| concepts[13].level | 1 |
| concepts[13].score | 0.14530760049819946 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[13].display_name | Algorithm |
| keywords[0].id | https://openalex.org/keywords/deconvolution |
| keywords[0].score | 0.6921894550323486 |
| keywords[0].display_name | Deconvolution |
| keywords[1].id | https://openalex.org/keywords/fluorescence |
| keywords[1].score | 0.6311343908309937 |
| keywords[1].display_name | Fluorescence |
| keywords[2].id | https://openalex.org/keywords/generative-grammar |
| keywords[2].score | 0.5947015881538391 |
| keywords[2].display_name | Generative grammar |
| keywords[3].id | https://openalex.org/keywords/microscopy |
| keywords[3].score | 0.5825214385986328 |
| keywords[3].display_name | Microscopy |
| keywords[4].id | https://openalex.org/keywords/fluorescence-microscope |
| keywords[4].score | 0.5641939043998718 |
| keywords[4].display_name | Fluorescence microscope |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5407857894897461 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/adversarial-system |
| keywords[6].score | 0.5116503834724426 |
| keywords[6].display_name | Adversarial system |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.4735927879810333 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/image |
| keywords[8].score | 0.4380357265472412 |
| keywords[8].display_name | Image (mathematics) |
| keywords[9].id | https://openalex.org/keywords/computer-vision |
| keywords[9].score | 0.4158300757408142 |
| keywords[9].display_name | Computer vision |
| keywords[10].id | https://openalex.org/keywords/chemistry |
| keywords[10].score | 0.3543455898761749 |
| keywords[10].display_name | Chemistry |
| keywords[11].id | https://openalex.org/keywords/optics |
| keywords[11].score | 0.24229386448860168 |
| keywords[11].display_name | Optics |
| keywords[12].id | https://openalex.org/keywords/physics |
| keywords[12].score | 0.19197675585746765 |
| keywords[12].display_name | Physics |
| keywords[13].id | https://openalex.org/keywords/algorithm |
| keywords[13].score | 0.14530760049819946 |
| keywords[13].display_name | Algorithm |
| language | en |
| locations[0].id | doi:10.1088/1361-6420/acc889 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S1393328 |
| locations[0].source.issn | 0266-5611, 1361-6420 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0266-5611 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Inverse Problems |
| locations[0].source.host_organization | https://openalex.org/P4310320083 |
| locations[0].source.host_organization_name | IOP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Inverse Problems |
| locations[0].landing_page_url | https://doi.org/10.1088/1361-6420/acc889 |
| locations[1].id | pmh:oai:HAL:hal-03790156v1 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402512 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | HAL (Le Centre pour la Communication Scientifique Directe) |
| locations[1].source.host_organization | https://openalex.org/I1294671590 |
| locations[1].source.host_organization_name | Centre National de la Recherche Scientifique |
| locations[1].source.host_organization_lineage | https://openalex.org/I1294671590 |
| locations[1].license | other-oa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/preprint |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | https://hal.science/hal-03790156 |
| locations[1].landing_page_url | https://hal.science/hal-03790156 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5024180719 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Mayeul Cachia |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I174015415 |
| authorships[0].affiliations[0].raw_affiliation_string | Morphologie et Images |
| authorships[0].institutions[0].id | https://openalex.org/I174015415 |
| authorships[0].institutions[0].ror | https://ror.org/05q5em355 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I174015415 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Morpho (United States) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mayeul Cachia |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Morphologie et Images |
| authorships[1].author.id | https://openalex.org/A5037816502 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0799-2028 |
| authorships[1].author.display_name | Vasiliki Stergiopoulou |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I174015415 |
| authorships[1].affiliations[0].raw_affiliation_string | Morphologie et Images |
| authorships[1].institutions[0].id | https://openalex.org/I174015415 |
| authorships[1].institutions[0].ror | https://ror.org/05q5em355 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I174015415 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Morpho (United States) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Vasiliki Stergiopoulou |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Morphologie et Images |
| authorships[2].author.id | https://openalex.org/A5019449011 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3887-1859 |
| authorships[2].author.display_name | Luca Calatroni |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I174015415 |
| authorships[2].affiliations[0].raw_affiliation_string | Morphologie et Images |
| authorships[2].institutions[0].id | https://openalex.org/I174015415 |
| authorships[2].institutions[0].ror | https://ror.org/05q5em355 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I174015415 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Morpho (United States) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Luca Calatroni |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Morphologie et Images |
| authorships[3].author.id | https://openalex.org/A5038534132 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9624-3271 |
| authorships[3].author.display_name | Sébastien Schaub |
| authorships[3].countries | FR, US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I174015415 |
| authorships[3].affiliations[0].raw_affiliation_string | Morphologie et Images |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I4210155524 |
| authorships[3].affiliations[1].raw_affiliation_string | Institut de la Mer de Villefranche |
| authorships[3].institutions[0].id | https://openalex.org/I4210155524 |
| authorships[3].institutions[0].ror | https://ror.org/04hke8425 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I1294671590, https://openalex.org/I1294671590, https://openalex.org/I39804081, https://openalex.org/I39804081, https://openalex.org/I4210096427, https://openalex.org/I4210155524, https://openalex.org/I4389425234 |
| authorships[3].institutions[0].country_code | FR |
| authorships[3].institutions[0].display_name | Laboratoire de Biologie du Développement de Villefranche-sur-Mer |
| authorships[3].institutions[1].id | https://openalex.org/I174015415 |
| authorships[3].institutions[1].ror | https://ror.org/05q5em355 |
| authorships[3].institutions[1].type | company |
| authorships[3].institutions[1].lineage | https://openalex.org/I174015415 |
| authorships[3].institutions[1].country_code | US |
| authorships[3].institutions[1].display_name | Morpho (United States) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sébastien Schaub |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Institut de la Mer de Villefranche, Morphologie et Images |
| authorships[4].author.id | https://openalex.org/A5088603553 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9693-6924 |
| authorships[4].author.display_name | Laure Blanc-Féraud |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I174015415 |
| authorships[4].affiliations[0].raw_affiliation_string | Morphologie et Images |
| authorships[4].institutions[0].id | https://openalex.org/I174015415 |
| authorships[4].institutions[0].ror | https://ror.org/05q5em355 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I174015415 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Morpho (United States) |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Laure Blanc-Féraud |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Morphologie et Images |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1088/1361-6420/acc889 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Fluorescence image deconvolution microscopy via generative adversarial learning (FluoGAN) |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12859 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1304 |
| primary_topic.subfield.display_name | Biophysics |
| primary_topic.display_name | Cell Image Analysis Techniques |
| related_works | https://openalex.org/W4367722749, https://openalex.org/W3024390022, https://openalex.org/W3198184493, https://openalex.org/W3156291593, https://openalex.org/W4285529901, https://openalex.org/W2901368259, https://openalex.org/W4313479464, https://openalex.org/W2973444776, https://openalex.org/W2006721351, https://openalex.org/W2019935669 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1088/1361-6420/acc889 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S1393328 |
| best_oa_location.source.issn | 0266-5611, 1361-6420 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0266-5611 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Inverse Problems |
| best_oa_location.source.host_organization | https://openalex.org/P4310320083 |
| best_oa_location.source.host_organization_name | IOP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Inverse Problems |
| best_oa_location.landing_page_url | https://doi.org/10.1088/1361-6420/acc889 |
| primary_location.id | doi:10.1088/1361-6420/acc889 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S1393328 |
| primary_location.source.issn | 0266-5611, 1361-6420 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0266-5611 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Inverse Problems |
| primary_location.source.host_organization | https://openalex.org/P4310320083 |
| primary_location.source.host_organization_name | IOP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Inverse Problems |
| primary_location.landing_page_url | https://doi.org/10.1088/1361-6420/acc889 |
| publication_date | 2023-03-29 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W6741832134, https://openalex.org/W2100556411, https://openalex.org/W2054455698, https://openalex.org/W3000695191, https://openalex.org/W2115706991, https://openalex.org/W2138673544, https://openalex.org/W2113146347, https://openalex.org/W6733970827, https://openalex.org/W2516778335, https://openalex.org/W6735913928, https://openalex.org/W3190979825, https://openalex.org/W2512505748, https://openalex.org/W6745560452, https://openalex.org/W2891129156, https://openalex.org/W1978938623, https://openalex.org/W4313526320, https://openalex.org/W2028781966, https://openalex.org/W2787020583, https://openalex.org/W2120504118, https://openalex.org/W2980398138, https://openalex.org/W1992858116, https://openalex.org/W2934437784, https://openalex.org/W2963709974, https://openalex.org/W2203973972, https://openalex.org/W2608845273, https://openalex.org/W3198440554, https://openalex.org/W4213291644, https://openalex.org/W3210302956, https://openalex.org/W3093637471, https://openalex.org/W4392929368, https://openalex.org/W2121058967, https://openalex.org/W3161717669 |
| referenced_works_count | 32 |
| abstract_inverted_index.. | 210 |
| abstract_inverted_index.a | 18, 34, 51, 81, 89, 102, 109, 115 |
| abstract_inverted_index.It | 131 |
| abstract_inverted_index.We | 1 |
| abstract_inverted_index.an | 4 |
| abstract_inverted_index.as | 88, 129, 143 |
| abstract_inverted_index.be | 133 |
| abstract_inverted_index.by | 74, 171 |
| abstract_inverted_index.cf | 200 |
| abstract_inverted_index.in | 196 |
| abstract_inverted_index.is | 72, 108, 206 |
| abstract_inverted_index.of | 12, 26, 77, 92, 118, 124, 127, 181, 193 |
| abstract_inverted_index.on | 39, 50, 138, 165 |
| abstract_inverted_index.to | 174 |
| abstract_inverted_index.we | 155 |
| abstract_inverted_index.The | 179, 203 |
| abstract_inverted_index.and | 66, 99, 101, 121, 161, 167 |
| abstract_inverted_index.at: | 208 |
| abstract_inverted_index.can | 132 |
| abstract_inverted_index.for | 23, 190 |
| abstract_inverted_index.one | 40 |
| abstract_inverted_index.the | 9, 24, 55, 59, 67, 85, 93, 125, 139, 150, 157 |
| abstract_inverted_index.two | 78 |
| abstract_inverted_index.Such | 70 |
| abstract_inverted_index.blur | 98 |
| abstract_inverted_index.code | 205 |
| abstract_inverted_index.data | 36, 52 |
| abstract_inverted_index.etc. | 146 |
| abstract_inverted_index.fine | 194 |
| abstract_inverted_index.from | 30 |
| abstract_inverted_index.main | 151 |
| abstract_inverted_index.only | 114 |
| abstract_inverted_index.real | 168, 198 |
| abstract_inverted_index.such | 142 |
| abstract_inverted_index.term | 37, 53 |
| abstract_inverted_index.used | 170 |
| abstract_inverted_index.with | 17, 44, 97, 135, 183 |
| abstract_inverted_index.After | 147 |
| abstract_inverted_index.Ovata | 201 |
| abstract_inverted_index.based | 38 |
| abstract_inverted_index.being | 54 |
| abstract_inverted_index.data. | 202 |
| abstract_inverted_index.fully | 110 |
| abstract_inverted_index.ideas | 152 |
| abstract_inverted_index.image | 27, 43 |
| abstract_inverted_index.noisy | 122 |
| abstract_inverted_index.prior | 136 |
| abstract_inverted_index.shows | 186 |
| abstract_inverted_index.assess | 176 |
| abstract_inverted_index.behind | 153 |
| abstract_inverted_index.having | 148 |
| abstract_inverted_index.hybrid | 6 |
| abstract_inverted_index.images | 95, 123 |
| abstract_inverted_index.input. | 130 |
| abstract_inverted_index.model. | 69 |
| abstract_inverted_index.relies | 49 |
| abstract_inverted_index.report | 162 |
| abstract_inverted_index.sample | 126 |
| abstract_inverted_index.terms, | 47 |
| abstract_inverted_index.FluoGAN | 48, 107, 182, 204 |
| abstract_inverted_index.Poisson | 90 |
| abstract_inverted_index.between | 58 |
| abstract_inverted_index.desired | 140 |
| abstract_inverted_index.images) | 65 |
| abstract_inverted_index.problem | 25, 160 |
| abstract_inverted_index.process | 91 |
| abstract_inverted_index.propose | 2 |
| abstract_inverted_index.results | 164 |
| abstract_inverted_index.several | 163 |
| abstract_inverted_index.spatial | 177 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.FluoGAN, | 3, 154 |
| abstract_inverted_index.allowing | 189 |
| abstract_inverted_index.approach | 7, 112 |
| abstract_inverted_index.blurred, | 119 |
| abstract_inverted_index.combined | 96 |
| abstract_inverted_index.computed | 73 |
| abstract_inverted_index.distance | 57, 71 |
| abstract_inverted_index.exposure | 64 |
| abstract_inverted_index.improved | 187 |
| abstract_inverted_index.interest | 128 |
| abstract_inverted_index.learning | 21 |
| abstract_inverted_index.network. | 106 |
| abstract_inverted_index.observed | 61, 94 |
| abstract_inverted_index.phantoms | 169 |
| abstract_inverted_index.physical | 10 |
| abstract_inverted_index.sequence | 117 |
| abstract_inverted_index.solution | 141 |
| abstract_inverted_index.standard | 31, 103 |
| abstract_inverted_index.training | 76 |
| abstract_inverted_index.available | 207 |
| abstract_inverted_index.behaviour | 87 |
| abstract_inverted_index.combining | 8, 33 |
| abstract_inverted_index.competing | 79 |
| abstract_inverted_index.described | 149 |
| abstract_inverted_index.engineers | 173 |
| abstract_inverted_index.exposure) | 42 |
| abstract_inverted_index.formulate | 156 |
| abstract_inverted_index.generator | 83 |
| abstract_inverted_index.knowledge | 137 |
| abstract_inverted_index.modelling | 11 |
| abstract_inverted_index.procedure | 22 |
| abstract_inverted_index.requiring | 113 |
| abstract_inverted_index.simulated | 166 |
| abstract_inverted_index.sparsity, | 144 |
| abstract_inverted_index.timelapse | 15, 62 |
| abstract_inverted_index.(long-time | 41 |
| abstract_inverted_index.Ostreopsis | 199 |
| abstract_inverted_index.approaches | 32 |
| abstract_inverted_index.comparison | 180 |
| abstract_inverted_index.generative | 19, 68 |
| abstract_inverted_index.microscopy | 14, 172 |
| abstract_inverted_index.simulating | 84 |
| abstract_inverted_index.structures | 195 |
| abstract_inverted_index.(short-time | 63 |
| abstract_inverted_index.Differently | 29 |
| abstract_inverted_index.adversarial | 20, 75 |
| abstract_inverted_index.challenging | 197 |
| abstract_inverted_index.fluctuating | 60, 86, 116 |
| abstract_inverted_index.resolution, | 188 |
| abstract_inverted_index.resolution. | 178 |
| abstract_inverted_index.acquisitions | 16 |
| abstract_inverted_index.complemented | 134 |
| abstract_inverted_index.fluorescence | 13 |
| abstract_inverted_index.least-square | 35 |
| abstract_inverted_index.optimisation | 159 |
| abstract_inverted_index.undersampled | 120 |
| abstract_inverted_index.unsupervised | 5, 111 |
| abstract_inverted_index.convolutional | 104 |
| abstract_inverted_index.corresponding | 158 |
| abstract_inverted_index.discriminator | 105 |
| abstract_inverted_index.methodologies | 185 |
| abstract_inverted_index.architectures: | 80 |
| abstract_inverted_index.deconvolution. | 28 |
| abstract_inverted_index.distributional | 56 |
| abstract_inverted_index.high-precision | 191 |
| abstract_inverted_index.non-negativity | 145 |
| abstract_inverted_index.quantitatively | 175 |
| abstract_inverted_index.regularisation | 46 |
| abstract_inverted_index.undersampling, | 100 |
| abstract_inverted_index.reconstructions | 192 |
| abstract_inverted_index.physics-inspired | 82 |
| abstract_inverted_index.state-of-the-art | 184 |
| abstract_inverted_index.sparsity-promoting | 45 |
| abstract_inverted_index.https://github.com/cmayeul/FluoGAN | 209 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.00038582 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |