FORCE: FORward modeling for Complex microstructure Estimation Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-8151109/v1
Diffusion Magnetic Resonance Imaging (dMRI) is a noninvasive modality that enables the study of brain tissue microstructure and the reconstruction of neural pathways. To achieve this, most reconstruction methods rely on inverse modeling techniques, which are often ill-posed and struggle to resolve shallow fiber crossings. Moreover, existing methods typically focus either on estimating fiber orientations or on deriving microstructural maps. As a result, obtaining a comprehensive characterization of tissue microstructure and architecture often requires combining multiple models, which is computationally demanding, potentially inconsistent due to model-specific assumptions and acquisition settings. This work introduces FORCE, a forward modeling paradigm that reframes how diffusion data is analyzed. Instead of inverting the measured signal, FORCE simulates a large set of biologically plausible intra-voxel fiber configurations and tissue compositions. It then identifies the best-matching simulation for each voxel by operating directly in the signal space. This unified framework simultaneously resolves low-angle fiber crossings, producing a large suite of microstructural maps and complete tissue segmentation in a single process. The proposed approach demonstrates robust performance across synthetic and real datasets from both human and mouse brains, encompassing multiple resolutions and acquisition types.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-8151109/v1
- OA Status
- gold
- OpenAlex ID
- https://openalex.org/W4416379590
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416379590Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-8151109/v1Digital Object Identifier
- Title
-
FORCE: FORward modeling for Complex microstructure EstimationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-20Full publication date if available
- Authors
-
Rafael Neto Henriques, Alonso Ramírez-Manzanares, Patryk Filipiak, Maharshi Gor, Serge KoudoroList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-8151109/v1Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.21203/rs.3.rs-8151109/v1Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416379590 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-8151109/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-8151109/v1 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/41333434 |
| ids.openalex | https://openalex.org/W4416379590 |
| fwci | |
| type | preprint |
| title | FORCE: FORward modeling for Complex microstructure Estimation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-8151109/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-8151109/v1 |
| locations[1].id | pmid:41333434 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Research square |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/41333434 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5080927253 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3891-8189 |
| authorships[0].author.display_name | Rafael Neto Henriques |
| authorships[0].countries | PT |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I141596103 |
| authorships[0].affiliations[0].raw_affiliation_string | Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa |
| authorships[0].institutions[0].id | https://openalex.org/I141596103 |
| authorships[0].institutions[0].ror | https://ror.org/01c27hj86 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I141596103 |
| authorships[0].institutions[0].country_code | PT |
| authorships[0].institutions[0].display_name | University of Lisbon |
| authorships[0].author_position | middle |
| authorships[0].raw_author_name | Rafael Neto Henriques |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa |
| authorships[1].author.id | https://openalex.org/A5091902626 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6645-9162 |
| authorships[1].author.display_name | Alonso Ramírez-Manzanares |
| authorships[1].countries | MX |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I124618812 |
| authorships[1].affiliations[0].raw_affiliation_string | Centro de Investigación en Matemáticas A.C. (CIMAT) |
| authorships[1].institutions[0].id | https://openalex.org/I124618812 |
| authorships[1].institutions[0].ror | https://ror.org/02nhmp827 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I124618812 |
| authorships[1].institutions[0].country_code | MX |
| authorships[1].institutions[0].display_name | Mathematics Research Center |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Alonso Ramirez-Manzanares |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Centro de Investigación en Matemáticas A.C. (CIMAT) |
| authorships[2].author.id | https://openalex.org/A5079892267 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3429-4572 |
| authorships[2].author.display_name | Patryk Filipiak |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210145671 |
| authorships[2].affiliations[0].raw_affiliation_string | Center for Advanced Imaging Innovation and Research, NYU Langone Health |
| authorships[2].institutions[0].id | https://openalex.org/I4210145671 |
| authorships[2].institutions[0].ror | https://ror.org/047c3xe48 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210145671 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Advanced Imaging Research (United States) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Patryk Filipiak |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Center for Advanced Imaging Innovation and Research, NYU Langone Health |
| authorships[3].author.id | https://openalex.org/A5120364632 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Maharshi Gor |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I592451 |
| authorships[3].affiliations[0].raw_affiliation_string | Indiana University |
| authorships[3].institutions[0].id | https://openalex.org/I592451 |
| authorships[3].institutions[0].ror | https://ror.org/01kg8sb98 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I592451 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Indiana University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Maharshi Gor |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Indiana University |
| authorships[4].author.id | https://openalex.org/A5108280418 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Serge Koudoro |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210119109 |
| authorships[4].affiliations[0].raw_affiliation_string | Indiana University Bloomington |
| authorships[4].institutions[0].id | https://openalex.org/I4210119109 |
| authorships[4].institutions[0].ror | https://ror.org/02k40bc56 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210119109, https://openalex.org/I592451 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Indiana University Bloomington |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Serge Koudoro |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Indiana University Bloomington |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.21203/rs.3.rs-8151109/v1 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-20T00:00:00 |
| display_name | FORCE: FORward modeling for Complex microstructure Estimation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T12:36:15.159534 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.21203/rs.3.rs-8151109/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-8151109/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-8151109/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-8151109/v1 |
| publication_date | 2025-11-20 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 7, 62, 65, 95, 114, 151, 162 |
| abstract_inverted_index.As | 61 |
| abstract_inverted_index.It | 126 |
| abstract_inverted_index.To | 24 |
| abstract_inverted_index.by | 135 |
| abstract_inverted_index.in | 138, 161 |
| abstract_inverted_index.is | 6, 79, 104 |
| abstract_inverted_index.of | 14, 21, 68, 107, 117, 154 |
| abstract_inverted_index.on | 31, 52, 57 |
| abstract_inverted_index.or | 56 |
| abstract_inverted_index.to | 41, 85 |
| abstract_inverted_index.The | 165 |
| abstract_inverted_index.and | 18, 39, 71, 88, 123, 157, 173, 179, 185 |
| abstract_inverted_index.are | 36 |
| abstract_inverted_index.due | 84 |
| abstract_inverted_index.for | 132 |
| abstract_inverted_index.how | 101 |
| abstract_inverted_index.set | 116 |
| abstract_inverted_index.the | 12, 19, 109, 129, 139 |
| abstract_inverted_index.This | 91, 142 |
| abstract_inverted_index.both | 177 |
| abstract_inverted_index.data | 103 |
| abstract_inverted_index.each | 133 |
| abstract_inverted_index.from | 176 |
| abstract_inverted_index.maps | 156 |
| abstract_inverted_index.most | 27 |
| abstract_inverted_index.real | 174 |
| abstract_inverted_index.rely | 30 |
| abstract_inverted_index.that | 10, 99 |
| abstract_inverted_index.then | 127 |
| abstract_inverted_index.work | 92 |
| abstract_inverted_index.FORCE | 112 |
| abstract_inverted_index.brain | 15 |
| abstract_inverted_index.fiber | 44, 54, 121, 148 |
| abstract_inverted_index.focus | 50 |
| abstract_inverted_index.human | 178 |
| abstract_inverted_index.large | 115, 152 |
| abstract_inverted_index.maps. | 60 |
| abstract_inverted_index.mouse | 180 |
| abstract_inverted_index.often | 37, 73 |
| abstract_inverted_index.study | 13 |
| abstract_inverted_index.suite | 153 |
| abstract_inverted_index.this, | 26 |
| abstract_inverted_index.voxel | 134 |
| abstract_inverted_index.which | 35, 78 |
| abstract_inverted_index.(dMRI) | 5 |
| abstract_inverted_index.FORCE, | 94 |
| abstract_inverted_index.across | 171 |
| abstract_inverted_index.either | 51 |
| abstract_inverted_index.neural | 22 |
| abstract_inverted_index.robust | 169 |
| abstract_inverted_index.signal | 140 |
| abstract_inverted_index.single | 163 |
| abstract_inverted_index.space. | 141 |
| abstract_inverted_index.tissue | 16, 69, 124, 159 |
| abstract_inverted_index.types. | 187 |
| abstract_inverted_index.Imaging | 4 |
| abstract_inverted_index.Instead | 106 |
| abstract_inverted_index.achieve | 25 |
| abstract_inverted_index.brains, | 181 |
| abstract_inverted_index.enables | 11 |
| abstract_inverted_index.forward | 96 |
| abstract_inverted_index.inverse | 32 |
| abstract_inverted_index.methods | 29, 48 |
| abstract_inverted_index.models, | 77 |
| abstract_inverted_index.resolve | 42 |
| abstract_inverted_index.result, | 63 |
| abstract_inverted_index.shallow | 43 |
| abstract_inverted_index.signal, | 111 |
| abstract_inverted_index.unified | 143 |
| abstract_inverted_index.Magnetic | 2 |
| abstract_inverted_index.approach | 167 |
| abstract_inverted_index.complete | 158 |
| abstract_inverted_index.datasets | 175 |
| abstract_inverted_index.deriving | 58 |
| abstract_inverted_index.directly | 137 |
| abstract_inverted_index.existing | 47 |
| abstract_inverted_index.measured | 110 |
| abstract_inverted_index.modality | 9 |
| abstract_inverted_index.modeling | 33, 97 |
| abstract_inverted_index.multiple | 76, 183 |
| abstract_inverted_index.paradigm | 98 |
| abstract_inverted_index.process. | 164 |
| abstract_inverted_index.proposed | 166 |
| abstract_inverted_index.reframes | 100 |
| abstract_inverted_index.requires | 74 |
| abstract_inverted_index.resolves | 146 |
| abstract_inverted_index.struggle | 40 |
| abstract_inverted_index.Diffusion | 1 |
| abstract_inverted_index.Moreover, | 46 |
| abstract_inverted_index.Resonance | 3 |
| abstract_inverted_index.analyzed. | 105 |
| abstract_inverted_index.combining | 75 |
| abstract_inverted_index.diffusion | 102 |
| abstract_inverted_index.framework | 144 |
| abstract_inverted_index.ill-posed | 38 |
| abstract_inverted_index.inverting | 108 |
| abstract_inverted_index.low-angle | 147 |
| abstract_inverted_index.obtaining | 64 |
| abstract_inverted_index.operating | 136 |
| abstract_inverted_index.pathways. | 23 |
| abstract_inverted_index.plausible | 119 |
| abstract_inverted_index.producing | 150 |
| abstract_inverted_index.settings. | 90 |
| abstract_inverted_index.simulates | 113 |
| abstract_inverted_index.synthetic | 172 |
| abstract_inverted_index.typically | 49 |
| abstract_inverted_index.crossings, | 149 |
| abstract_inverted_index.crossings. | 45 |
| abstract_inverted_index.demanding, | 81 |
| abstract_inverted_index.estimating | 53 |
| abstract_inverted_index.identifies | 128 |
| abstract_inverted_index.introduces | 93 |
| abstract_inverted_index.simulation | 131 |
| abstract_inverted_index.acquisition | 89, 186 |
| abstract_inverted_index.assumptions | 87 |
| abstract_inverted_index.intra-voxel | 120 |
| abstract_inverted_index.noninvasive | 8 |
| abstract_inverted_index.performance | 170 |
| abstract_inverted_index.potentially | 82 |
| abstract_inverted_index.resolutions | 184 |
| abstract_inverted_index.techniques, | 34 |
| abstract_inverted_index.architecture | 72 |
| abstract_inverted_index.biologically | 118 |
| abstract_inverted_index.demonstrates | 168 |
| abstract_inverted_index.encompassing | 182 |
| abstract_inverted_index.inconsistent | 83 |
| abstract_inverted_index.orientations | 55 |
| abstract_inverted_index.segmentation | 160 |
| abstract_inverted_index.best-matching | 130 |
| abstract_inverted_index.compositions. | 125 |
| abstract_inverted_index.comprehensive | 66 |
| abstract_inverted_index.configurations | 122 |
| abstract_inverted_index.microstructure | 17, 70 |
| abstract_inverted_index.model-specific | 86 |
| abstract_inverted_index.reconstruction | 20, 28 |
| abstract_inverted_index.simultaneously | 145 |
| abstract_inverted_index.computationally | 80 |
| abstract_inverted_index.microstructural | 59, 155 |
| abstract_inverted_index.characterization | 67 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| cited_by_percentile_year | |
| countries_distinct_count | 3 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |