Forecasting Acute Kidney Injury and Resource Utilization in ICU patients using longitudinal, multimodal models Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1101/2024.03.14.24304230
Background Advances in artificial intelligence (AI) have realized the potential of revolutionizing healthcare, such as predicting disease progression via longitudinal inspection of Electronic Health Records (EHRs) and lab tests from patients admitted to Intensive Care Units (ICU). Although substantial literature exists addressing broad subjects, including the prediction of mortality, length-of-stay, and readmission, studies focusing on forecasting Acute Kidney Injury (AKI), specifically dialysis anticipation like Continuous Renal Replacement Therapy (CRRT) are scarce. The technicality of how to implement AI remains elusive. Objective This study aims to elucidate the important factors and methods that are required to develop effective predictive models of AKI and CRRT for patients admitted to ICU, using EHRs in the Medical Information Mart for Intensive Care (MIMIC) database. Methods We conducted a comprehensive comparative analysis of established predictive models, considering both time-series measurements and clinical notes from MIMIC-IV databases. Subsequently, we proposed a novel multi-modal model which integrates embeddings of top-performing unimodal models, including Long Short-Term Memory (LSTM) and BioMedBERT, and leverages both unstructured clinical notes and structured time series measurements derived from EHRs to enable the early prediction of AKI and CRRT. Results Our multimodal model achieved a lead time of at least 12 hours ahead of clinical manifestation, with an Area Under the Receiver Operating Characteristic Curve (AUROC) of 0.888 for AKI and 0.997 for CRRT, as well as an Area Under the Precision Recall Curve (AUPRC) of 0.727 for AKI and 0.840 for CRRT, respectively, which significantly outperformed the baseline models. Additionally, we performed a SHapley Additive exPlanation (SHAP) analysis using the expected gradients algorithm, which highlighted important, previously underappreciated predictive features for AKI and CRRT. Conclusion Our study revealed the importance and the technicality of applying longitudinal, multimodal modeling to improve early prediction of AKI and CRRT, offering insights for timely interventions. The performance and interpretability of our model indicate its potential for further assessment towards clinical applications, to ultimately optimize AKI management and enhance patient outcomes.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2024.03.14.24304230
- https://www.medrxiv.org/content/medrxiv/early/2024/03/15/2024.03.14.24304230.full.pdf
- OA Status
- green
- References
- 63
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392855314
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392855314Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2024.03.14.24304230Digital Object Identifier
- Title
-
Forecasting Acute Kidney Injury and Resource Utilization in ICU patients using longitudinal, multimodal modelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-15Full publication date if available
- Authors
-
Yukun Tan, Merve Dede, Vakul Mohanty, Jinzhuang Dou, Holly A. Hill, Elmer V. Bernstam, Ken ChenList of authors in order
- Landing page
-
https://doi.org/10.1101/2024.03.14.24304230Publisher landing page
- PDF URL
-
https://www.medrxiv.org/content/medrxiv/early/2024/03/15/2024.03.14.24304230.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.medrxiv.org/content/medrxiv/early/2024/03/15/2024.03.14.24304230.full.pdfDirect OA link when available
- Concepts
-
Renal replacement therapy, Acute kidney injury, Receiver operating characteristic, Medicine, Intensive care medicine, Dialysis, Intensive care unit, Intensive care, Mechanical ventilation, Emergency medicine, Artificial intelligence, Medical emergency, Computer science, Internal medicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
63Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392855314 |
|---|---|
| doi | https://doi.org/10.1101/2024.03.14.24304230 |
| ids.doi | https://doi.org/10.1101/2024.03.14.24304230 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38559064 |
| ids.openalex | https://openalex.org/W4392855314 |
| fwci | 0.0 |
| type | preprint |
| title | Forecasting Acute Kidney Injury and Resource Utilization in ICU patients using longitudinal, multimodal models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11700 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9955999851226807 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2746 |
| topics[0].subfield.display_name | Surgery |
| topics[0].display_name | Hemodynamic Monitoring and Therapy |
| topics[1].id | https://openalex.org/T10218 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9930999875068665 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2713 |
| topics[1].subfield.display_name | Epidemiology |
| topics[1].display_name | Sepsis Diagnosis and Treatment |
| topics[2].id | https://openalex.org/T10144 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.986299991607666 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2705 |
| topics[2].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[2].display_name | Blood Pressure and Hypertension Studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2779541074 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8068906664848328 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q185643 |
| concepts[0].display_name | Renal replacement therapy |
| concepts[1].id | https://openalex.org/C2780472472 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7660064101219177 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q424337 |
| concepts[1].display_name | Acute kidney injury |
| concepts[2].id | https://openalex.org/C58471807 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6651597619056702 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q327120 |
| concepts[2].display_name | Receiver operating characteristic |
| concepts[3].id | https://openalex.org/C71924100 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5726020932197571 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[3].display_name | Medicine |
| concepts[4].id | https://openalex.org/C177713679 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5525633096694946 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q679690 |
| concepts[4].display_name | Intensive care medicine |
| concepts[5].id | https://openalex.org/C2779978075 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5114790201187134 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q202301 |
| concepts[5].display_name | Dialysis |
| concepts[6].id | https://openalex.org/C2776376669 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4788472652435303 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5094647 |
| concepts[6].display_name | Intensive care unit |
| concepts[7].id | https://openalex.org/C2987404301 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4731862545013428 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q679690 |
| concepts[7].display_name | Intensive care |
| concepts[8].id | https://openalex.org/C2777080012 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4546026885509491 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3766250 |
| concepts[8].display_name | Mechanical ventilation |
| concepts[9].id | https://openalex.org/C194828623 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4105462431907654 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2861470 |
| concepts[9].display_name | Emergency medicine |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.38106974959373474 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C545542383 |
| concepts[11].level | 1 |
| concepts[11].score | 0.32154303789138794 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2751242 |
| concepts[11].display_name | Medical emergency |
| concepts[12].id | https://openalex.org/C41008148 |
| concepts[12].level | 0 |
| concepts[12].score | 0.30123215913772583 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[12].display_name | Computer science |
| concepts[13].id | https://openalex.org/C126322002 |
| concepts[13].level | 1 |
| concepts[13].score | 0.1932242512702942 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[13].display_name | Internal medicine |
| keywords[0].id | https://openalex.org/keywords/renal-replacement-therapy |
| keywords[0].score | 0.8068906664848328 |
| keywords[0].display_name | Renal replacement therapy |
| keywords[1].id | https://openalex.org/keywords/acute-kidney-injury |
| keywords[1].score | 0.7660064101219177 |
| keywords[1].display_name | Acute kidney injury |
| keywords[2].id | https://openalex.org/keywords/receiver-operating-characteristic |
| keywords[2].score | 0.6651597619056702 |
| keywords[2].display_name | Receiver operating characteristic |
| keywords[3].id | https://openalex.org/keywords/medicine |
| keywords[3].score | 0.5726020932197571 |
| keywords[3].display_name | Medicine |
| keywords[4].id | https://openalex.org/keywords/intensive-care-medicine |
| keywords[4].score | 0.5525633096694946 |
| keywords[4].display_name | Intensive care medicine |
| keywords[5].id | https://openalex.org/keywords/dialysis |
| keywords[5].score | 0.5114790201187134 |
| keywords[5].display_name | Dialysis |
| keywords[6].id | https://openalex.org/keywords/intensive-care-unit |
| keywords[6].score | 0.4788472652435303 |
| keywords[6].display_name | Intensive care unit |
| keywords[7].id | https://openalex.org/keywords/intensive-care |
| keywords[7].score | 0.4731862545013428 |
| keywords[7].display_name | Intensive care |
| keywords[8].id | https://openalex.org/keywords/mechanical-ventilation |
| keywords[8].score | 0.4546026885509491 |
| keywords[8].display_name | Mechanical ventilation |
| keywords[9].id | https://openalex.org/keywords/emergency-medicine |
| keywords[9].score | 0.4105462431907654 |
| keywords[9].display_name | Emergency medicine |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.38106974959373474 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/medical-emergency |
| keywords[11].score | 0.32154303789138794 |
| keywords[11].display_name | Medical emergency |
| keywords[12].id | https://openalex.org/keywords/computer-science |
| keywords[12].score | 0.30123215913772583 |
| keywords[12].display_name | Computer science |
| keywords[13].id | https://openalex.org/keywords/internal-medicine |
| keywords[13].score | 0.1932242512702942 |
| keywords[13].display_name | Internal medicine |
| language | en |
| locations[0].id | doi:10.1101/2024.03.14.24304230 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.medrxiv.org/content/medrxiv/early/2024/03/15/2024.03.14.24304230.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2024.03.14.24304230 |
| locations[1].id | pmid:38559064 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | medRxiv : the preprint server for health sciences |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38559064 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10980131 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | medRxiv |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10980131 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5067532727 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6368-8653 |
| authorships[0].author.display_name | Yukun Tan |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1343551460 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center |
| authorships[0].institutions[0].id | https://openalex.org/I1343551460 |
| authorships[0].institutions[0].ror | https://ror.org/04twxam07 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I1343551460 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | The University of Texas MD Anderson Cancer Center |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yukun Tan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center |
| authorships[1].author.id | https://openalex.org/A5008128588 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0868-5863 |
| authorships[1].author.display_name | Merve Dede |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1343551460 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center |
| authorships[1].institutions[0].id | https://openalex.org/I1343551460 |
| authorships[1].institutions[0].ror | https://ror.org/04twxam07 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I1343551460 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | The University of Texas MD Anderson Cancer Center |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Merve Dede |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center |
| authorships[2].author.id | https://openalex.org/A5094165389 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Vakul Mohanty |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1343551460 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center |
| authorships[2].institutions[0].id | https://openalex.org/I1343551460 |
| authorships[2].institutions[0].ror | https://ror.org/04twxam07 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I1343551460 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | The University of Texas MD Anderson Cancer Center |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Vakul Mohanty |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center |
| authorships[3].author.id | https://openalex.org/A5101843264 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0090-4264 |
| authorships[3].author.display_name | Jinzhuang Dou |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1343551460 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center |
| authorships[3].institutions[0].id | https://openalex.org/I1343551460 |
| authorships[3].institutions[0].ror | https://ror.org/04twxam07 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I1343551460 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | The University of Texas MD Anderson Cancer Center |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jinzhuang Dou |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center |
| authorships[4].author.id | https://openalex.org/A5085683341 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3642-1897 |
| authorships[4].author.display_name | Holly A. Hill |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1343551460 |
| authorships[4].affiliations[0].raw_affiliation_string | Division of Pathology and Laboratory Medicine, Molecular Diagnostic Laboratory, The University of Texas MD Anderson Cancer Center |
| authorships[4].institutions[0].id | https://openalex.org/I1343551460 |
| authorships[4].institutions[0].ror | https://ror.org/04twxam07 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I1343551460 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | The University of Texas MD Anderson Cancer Center |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Holly Hill |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Division of Pathology and Laboratory Medicine, Molecular Diagnostic Laboratory, The University of Texas MD Anderson Cancer Center |
| authorships[5].author.id | https://openalex.org/A5075275684 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7643-791X |
| authorships[5].author.display_name | Elmer V. Bernstam |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I919571938 |
| authorships[5].affiliations[0].raw_affiliation_string | Division of General Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I919571938 |
| authorships[5].affiliations[1].raw_affiliation_string | D. Bradley McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston |
| authorships[5].institutions[0].id | https://openalex.org/I919571938 |
| authorships[5].institutions[0].ror | https://ror.org/03gds6c39 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I919571938 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | The University of Texas Health Science Center at Houston |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Elmer Bernstam |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | D. Bradley McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Division of General Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston |
| authorships[6].author.id | https://openalex.org/A5100420347 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-4013-5279 |
| authorships[6].author.display_name | Ken Chen |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I1343551460 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center |
| authorships[6].institutions[0].id | https://openalex.org/I1343551460 |
| authorships[6].institutions[0].ror | https://ror.org/04twxam07 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I1343551460 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | The University of Texas MD Anderson Cancer Center |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Ken Chen |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.medrxiv.org/content/medrxiv/early/2024/03/15/2024.03.14.24304230.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Forecasting Acute Kidney Injury and Resource Utilization in ICU patients using longitudinal, multimodal models |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11700 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9955999851226807 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2746 |
| primary_topic.subfield.display_name | Surgery |
| primary_topic.display_name | Hemodynamic Monitoring and Therapy |
| related_works | https://openalex.org/W2410120147, https://openalex.org/W2969690374, https://openalex.org/W2098898427, https://openalex.org/W2507362437, https://openalex.org/W2039875560, https://openalex.org/W4212907029, https://openalex.org/W4307867127, https://openalex.org/W2889237166, https://openalex.org/W4388469456, https://openalex.org/W3032147355 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1101/2024.03.14.24304230 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2024/03/15/2024.03.14.24304230.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2024.03.14.24304230 |
| primary_location.id | doi:10.1101/2024.03.14.24304230 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2024/03/15/2024.03.14.24304230.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2024.03.14.24304230 |
| publication_date | 2024-03-15 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2026274122, https://openalex.org/W1999977772, https://openalex.org/W2583426533, https://openalex.org/W2624430479, https://openalex.org/W2981992161, https://openalex.org/W2787798272, https://openalex.org/W2418289643, https://openalex.org/W2062786076, https://openalex.org/W2338413096, https://openalex.org/W2602915668, https://openalex.org/W2017657594, https://openalex.org/W2079079821, https://openalex.org/W2141559993, https://openalex.org/W1600794084, https://openalex.org/W2004910511, https://openalex.org/W2096908543, https://openalex.org/W2286158066, https://openalex.org/W2560359632, https://openalex.org/W2944400536, https://openalex.org/W2967453594, https://openalex.org/W2896457183, https://openalex.org/W4323567514, https://openalex.org/W2055675692, https://openalex.org/W1968656204, https://openalex.org/W3005348902, https://openalex.org/W4313644436, https://openalex.org/W2342731602, https://openalex.org/W2319550379, https://openalex.org/W2943786270, https://openalex.org/W4280622705, https://openalex.org/W4280556240, https://openalex.org/W4281628937, https://openalex.org/W3128201067, https://openalex.org/W3008277872, https://openalex.org/W3045231068, https://openalex.org/W1968461350, https://openalex.org/W4290877088, https://openalex.org/W4317780575, https://openalex.org/W4375858857, https://openalex.org/W4283370926, https://openalex.org/W2963078493, https://openalex.org/W2295598076, https://openalex.org/W2064675550, https://openalex.org/W3046375318, https://openalex.org/W2937845937, https://openalex.org/W4288108765, https://openalex.org/W3176273155, https://openalex.org/W4313439128, https://openalex.org/W4288083420, https://openalex.org/W4225297913, https://openalex.org/W3085380432, https://openalex.org/W2962862931, https://openalex.org/W1989951741, https://openalex.org/W2100160497, https://openalex.org/W1978938354, https://openalex.org/W2072945343, https://openalex.org/W2295807774, https://openalex.org/W3081402784, https://openalex.org/W1802532219, https://openalex.org/W2917653738, https://openalex.org/W2324545540, https://openalex.org/W3101973032, https://openalex.org/W3097436443 |
| referenced_works_count | 63 |
| abstract_inverted_index.a | 124, 145, 191, 250 |
| abstract_inverted_index.12 | 197 |
| abstract_inverted_index.AI | 78 |
| abstract_inverted_index.We | 122 |
| abstract_inverted_index.an | 204, 224 |
| abstract_inverted_index.as | 15, 221, 223 |
| abstract_inverted_index.at | 195 |
| abstract_inverted_index.in | 3, 111 |
| abstract_inverted_index.of | 11, 22, 48, 74, 100, 128, 152, 182, 194, 200, 213, 232, 281, 290, 303 |
| abstract_inverted_index.on | 55 |
| abstract_inverted_index.to | 33, 76, 85, 95, 107, 177, 286, 315 |
| abstract_inverted_index.we | 143, 248 |
| abstract_inverted_index.AKI | 101, 183, 216, 235, 269, 291, 318 |
| abstract_inverted_index.Our | 187, 273 |
| abstract_inverted_index.The | 72, 299 |
| abstract_inverted_index.and | 27, 51, 90, 102, 136, 161, 163, 169, 184, 217, 236, 270, 278, 292, 301, 320 |
| abstract_inverted_index.are | 70, 93 |
| abstract_inverted_index.for | 104, 116, 215, 219, 234, 238, 268, 296, 309 |
| abstract_inverted_index.how | 75 |
| abstract_inverted_index.its | 307 |
| abstract_inverted_index.lab | 28 |
| abstract_inverted_index.our | 304 |
| abstract_inverted_index.the | 9, 46, 87, 112, 179, 207, 227, 244, 257, 276, 279 |
| abstract_inverted_index.via | 19 |
| abstract_inverted_index.(AI) | 6 |
| abstract_inverted_index.Area | 205, 225 |
| abstract_inverted_index.CRRT | 103 |
| abstract_inverted_index.Care | 35, 118 |
| abstract_inverted_index.EHRs | 110, 176 |
| abstract_inverted_index.ICU, | 108 |
| abstract_inverted_index.Long | 157 |
| abstract_inverted_index.Mart | 115 |
| abstract_inverted_index.This | 82 |
| abstract_inverted_index.aims | 84 |
| abstract_inverted_index.both | 133, 165 |
| abstract_inverted_index.from | 30, 139, 175 |
| abstract_inverted_index.have | 7 |
| abstract_inverted_index.lead | 192 |
| abstract_inverted_index.like | 64 |
| abstract_inverted_index.such | 14 |
| abstract_inverted_index.that | 92 |
| abstract_inverted_index.time | 171, 193 |
| abstract_inverted_index.well | 222 |
| abstract_inverted_index.with | 203 |
| abstract_inverted_index.0.727 | 233 |
| abstract_inverted_index.0.840 | 237 |
| abstract_inverted_index.0.888 | 214 |
| abstract_inverted_index.0.997 | 218 |
| abstract_inverted_index.Acute | 57 |
| abstract_inverted_index.CRRT, | 220, 239, 293 |
| abstract_inverted_index.CRRT. | 185, 271 |
| abstract_inverted_index.Curve | 211, 230 |
| abstract_inverted_index.Renal | 66 |
| abstract_inverted_index.Under | 206, 226 |
| abstract_inverted_index.Units | 36 |
| abstract_inverted_index.ahead | 199 |
| abstract_inverted_index.broad | 43 |
| abstract_inverted_index.early | 180, 288 |
| abstract_inverted_index.hours | 198 |
| abstract_inverted_index.least | 196 |
| abstract_inverted_index.model | 148, 189, 305 |
| abstract_inverted_index.notes | 138, 168 |
| abstract_inverted_index.novel | 146 |
| abstract_inverted_index.study | 83, 274 |
| abstract_inverted_index.tests | 29 |
| abstract_inverted_index.using | 109, 256 |
| abstract_inverted_index.which | 149, 241, 261 |
| abstract_inverted_index.(AKI), | 60 |
| abstract_inverted_index.(CRRT) | 69 |
| abstract_inverted_index.(EHRs) | 26 |
| abstract_inverted_index.(ICU). | 37 |
| abstract_inverted_index.(LSTM) | 160 |
| abstract_inverted_index.(SHAP) | 254 |
| abstract_inverted_index.Health | 24 |
| abstract_inverted_index.Injury | 59 |
| abstract_inverted_index.Kidney | 58 |
| abstract_inverted_index.Memory | 159 |
| abstract_inverted_index.Recall | 229 |
| abstract_inverted_index.enable | 178 |
| abstract_inverted_index.exists | 41 |
| abstract_inverted_index.models | 99 |
| abstract_inverted_index.series | 172 |
| abstract_inverted_index.timely | 297 |
| abstract_inverted_index.(AUPRC) | 231 |
| abstract_inverted_index.(AUROC) | 212 |
| abstract_inverted_index.(MIMIC) | 119 |
| abstract_inverted_index.Medical | 113 |
| abstract_inverted_index.Methods | 121 |
| abstract_inverted_index.Records | 25 |
| abstract_inverted_index.Results | 186 |
| abstract_inverted_index.SHapley | 251 |
| abstract_inverted_index.Therapy | 68 |
| abstract_inverted_index.derived | 174 |
| abstract_inverted_index.develop | 96 |
| abstract_inverted_index.disease | 17 |
| abstract_inverted_index.enhance | 321 |
| abstract_inverted_index.factors | 89 |
| abstract_inverted_index.further | 310 |
| abstract_inverted_index.improve | 287 |
| abstract_inverted_index.methods | 91 |
| abstract_inverted_index.models, | 131, 155 |
| abstract_inverted_index.models. | 246 |
| abstract_inverted_index.patient | 322 |
| abstract_inverted_index.remains | 79 |
| abstract_inverted_index.scarce. | 71 |
| abstract_inverted_index.studies | 53 |
| abstract_inverted_index.towards | 312 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Additive | 252 |
| abstract_inverted_index.Advances | 2 |
| abstract_inverted_index.Although | 38 |
| abstract_inverted_index.MIMIC-IV | 140 |
| abstract_inverted_index.Receiver | 208 |
| abstract_inverted_index.achieved | 190 |
| abstract_inverted_index.admitted | 32, 106 |
| abstract_inverted_index.analysis | 127, 255 |
| abstract_inverted_index.applying | 282 |
| abstract_inverted_index.baseline | 245 |
| abstract_inverted_index.clinical | 137, 167, 201, 313 |
| abstract_inverted_index.dialysis | 62 |
| abstract_inverted_index.elusive. | 80 |
| abstract_inverted_index.expected | 258 |
| abstract_inverted_index.features | 267 |
| abstract_inverted_index.focusing | 54 |
| abstract_inverted_index.indicate | 306 |
| abstract_inverted_index.insights | 295 |
| abstract_inverted_index.modeling | 285 |
| abstract_inverted_index.offering | 294 |
| abstract_inverted_index.optimize | 317 |
| abstract_inverted_index.patients | 31, 105 |
| abstract_inverted_index.proposed | 144 |
| abstract_inverted_index.realized | 8 |
| abstract_inverted_index.required | 94 |
| abstract_inverted_index.revealed | 275 |
| abstract_inverted_index.unimodal | 154 |
| abstract_inverted_index.Intensive | 34, 117 |
| abstract_inverted_index.Objective | 81 |
| abstract_inverted_index.Operating | 209 |
| abstract_inverted_index.Precision | 228 |
| abstract_inverted_index.conducted | 123 |
| abstract_inverted_index.database. | 120 |
| abstract_inverted_index.effective | 97 |
| abstract_inverted_index.elucidate | 86 |
| abstract_inverted_index.gradients | 259 |
| abstract_inverted_index.implement | 77 |
| abstract_inverted_index.important | 88 |
| abstract_inverted_index.including | 45, 156 |
| abstract_inverted_index.leverages | 164 |
| abstract_inverted_index.outcomes. | 323 |
| abstract_inverted_index.performed | 249 |
| abstract_inverted_index.potential | 10, 308 |
| abstract_inverted_index.subjects, | 44 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.Conclusion | 272 |
| abstract_inverted_index.Continuous | 65 |
| abstract_inverted_index.Electronic | 23 |
| abstract_inverted_index.Short-Term | 158 |
| abstract_inverted_index.addressing | 42 |
| abstract_inverted_index.algorithm, | 260 |
| abstract_inverted_index.artificial | 4 |
| abstract_inverted_index.assessment | 311 |
| abstract_inverted_index.databases. | 141 |
| abstract_inverted_index.embeddings | 151 |
| abstract_inverted_index.importance | 277 |
| abstract_inverted_index.important, | 263 |
| abstract_inverted_index.inspection | 21 |
| abstract_inverted_index.integrates | 150 |
| abstract_inverted_index.literature | 40 |
| abstract_inverted_index.management | 319 |
| abstract_inverted_index.mortality, | 49 |
| abstract_inverted_index.multimodal | 188, 284 |
| abstract_inverted_index.predicting | 16 |
| abstract_inverted_index.prediction | 47, 181, 289 |
| abstract_inverted_index.predictive | 98, 130, 266 |
| abstract_inverted_index.previously | 264 |
| abstract_inverted_index.structured | 170 |
| abstract_inverted_index.ultimately | 316 |
| abstract_inverted_index.BioMedBERT, | 162 |
| abstract_inverted_index.Information | 114 |
| abstract_inverted_index.Replacement | 67 |
| abstract_inverted_index.comparative | 126 |
| abstract_inverted_index.considering | 132 |
| abstract_inverted_index.established | 129 |
| abstract_inverted_index.exPlanation | 253 |
| abstract_inverted_index.forecasting | 56 |
| abstract_inverted_index.healthcare, | 13 |
| abstract_inverted_index.highlighted | 262 |
| abstract_inverted_index.multi-modal | 147 |
| abstract_inverted_index.performance | 300 |
| abstract_inverted_index.progression | 18 |
| abstract_inverted_index.substantial | 39 |
| abstract_inverted_index.time-series | 134 |
| abstract_inverted_index.anticipation | 63 |
| abstract_inverted_index.intelligence | 5 |
| abstract_inverted_index.longitudinal | 20 |
| abstract_inverted_index.measurements | 135, 173 |
| abstract_inverted_index.outperformed | 243 |
| abstract_inverted_index.readmission, | 52 |
| abstract_inverted_index.specifically | 61 |
| abstract_inverted_index.technicality | 73, 280 |
| abstract_inverted_index.unstructured | 166 |
| abstract_inverted_index.Additionally, | 247 |
| abstract_inverted_index.Subsequently, | 142 |
| abstract_inverted_index.applications, | 314 |
| abstract_inverted_index.comprehensive | 125 |
| abstract_inverted_index.longitudinal, | 283 |
| abstract_inverted_index.respectively, | 240 |
| abstract_inverted_index.significantly | 242 |
| abstract_inverted_index.Characteristic | 210 |
| abstract_inverted_index.interventions. | 298 |
| abstract_inverted_index.manifestation, | 202 |
| abstract_inverted_index.top-performing | 153 |
| abstract_inverted_index.length-of-stay, | 50 |
| abstract_inverted_index.revolutionizing | 12 |
| abstract_inverted_index.interpretability | 302 |
| abstract_inverted_index.underappreciated | 265 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5100420347 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I1343551460 |
| citation_normalized_percentile.value | 0.06818768 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |