Forecasting Algorithms for Causal Inference with Panel Data Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2208.03489
Conducting causal inference with panel data is a core challenge in social science research. We adapt a deep neural architecture for time series forecasting (the N-BEATS algorithm) to more accurately impute the counterfactual evolution of a treated unit had treatment not occurred. Across a range of settings, the resulting estimator (``SyNBEATS'') significantly outperforms commonly employed methods (synthetic controls, two-way fixed effects), and attains comparable or more accurate performance compared to recently proposed methods (synthetic difference-in-differences, matrix completion). An implementation of this estimator is available for public use. Our results highlight how advances in the forecasting literature can be harnessed to improve causal inference in panel data settings.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2208.03489
- https://arxiv.org/pdf/2208.03489
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4298176655
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4298176655Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2208.03489Digital Object Identifier
- Title
-
Forecasting Algorithms for Causal Inference with Panel DataWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-08-06Full publication date if available
- Authors
-
Jacob Goldin, Julian Nyarko, Justin YoungList of authors in order
- Landing page
-
https://arxiv.org/abs/2208.03489Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2208.03489Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2208.03489Direct OA link when available
- Concepts
-
Counterfactual thinking, Causal inference, Inference, Panel data, Computer science, Estimator, Synthetic data, Time series, Series (stratigraphy), Artificial intelligence, Algorithm, Range (aeronautics), Machine learning, Econometrics, Mathematics, Statistics, Psychology, Engineering, Social psychology, Aerospace engineering, Biology, PaleontologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4298176655 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2208.03489 |
| ids.doi | https://doi.org/10.48550/arxiv.2208.03489 |
| ids.openalex | https://openalex.org/W4298176655 |
| fwci | |
| type | preprint |
| title | Forecasting Algorithms for Causal Inference with Panel Data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10845 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9828000068664551 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Advanced Causal Inference Techniques |
| topics[1].id | https://openalex.org/T11303 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9150000214576721 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Bayesian Modeling and Causal Inference |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C108650721 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8350512981414795 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1783253 |
| concepts[0].display_name | Counterfactual thinking |
| concepts[1].id | https://openalex.org/C158600405 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8052530288696289 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5054566 |
| concepts[1].display_name | Causal inference |
| concepts[2].id | https://openalex.org/C2776214188 |
| concepts[2].level | 2 |
| concepts[2].score | 0.713498055934906 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[2].display_name | Inference |
| concepts[3].id | https://openalex.org/C6422946 |
| concepts[3].level | 2 |
| concepts[3].score | 0.670753002166748 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q857354 |
| concepts[3].display_name | Panel data |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.602453351020813 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C185429906 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5980130434036255 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[5].display_name | Estimator |
| concepts[6].id | https://openalex.org/C160920958 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5063692331314087 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7662746 |
| concepts[6].display_name | Synthetic data |
| concepts[7].id | https://openalex.org/C151406439 |
| concepts[7].level | 2 |
| concepts[7].score | 0.48905596137046814 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q186588 |
| concepts[7].display_name | Time series |
| concepts[8].id | https://openalex.org/C143724316 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4577862024307251 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q312468 |
| concepts[8].display_name | Series (stratigraphy) |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.44571542739868164 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C11413529 |
| concepts[10].level | 1 |
| concepts[10].score | 0.42843377590179443 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[10].display_name | Algorithm |
| concepts[11].id | https://openalex.org/C204323151 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4178510904312134 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q905424 |
| concepts[11].display_name | Range (aeronautics) |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.397023469209671 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C149782125 |
| concepts[13].level | 1 |
| concepts[13].score | 0.350034236907959 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[13].display_name | Econometrics |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.2088591754436493 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C105795698 |
| concepts[15].level | 1 |
| concepts[15].score | 0.16001349687576294 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[15].display_name | Statistics |
| concepts[16].id | https://openalex.org/C15744967 |
| concepts[16].level | 0 |
| concepts[16].score | 0.1118907630443573 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[16].display_name | Psychology |
| concepts[17].id | https://openalex.org/C127413603 |
| concepts[17].level | 0 |
| concepts[17].score | 0.08917394280433655 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[17].display_name | Engineering |
| concepts[18].id | https://openalex.org/C77805123 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q161272 |
| concepts[18].display_name | Social psychology |
| concepts[19].id | https://openalex.org/C146978453 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[19].display_name | Aerospace engineering |
| concepts[20].id | https://openalex.org/C86803240 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[20].display_name | Biology |
| concepts[21].id | https://openalex.org/C151730666 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[21].display_name | Paleontology |
| keywords[0].id | https://openalex.org/keywords/counterfactual-thinking |
| keywords[0].score | 0.8350512981414795 |
| keywords[0].display_name | Counterfactual thinking |
| keywords[1].id | https://openalex.org/keywords/causal-inference |
| keywords[1].score | 0.8052530288696289 |
| keywords[1].display_name | Causal inference |
| keywords[2].id | https://openalex.org/keywords/inference |
| keywords[2].score | 0.713498055934906 |
| keywords[2].display_name | Inference |
| keywords[3].id | https://openalex.org/keywords/panel-data |
| keywords[3].score | 0.670753002166748 |
| keywords[3].display_name | Panel data |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.602453351020813 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/estimator |
| keywords[5].score | 0.5980130434036255 |
| keywords[5].display_name | Estimator |
| keywords[6].id | https://openalex.org/keywords/synthetic-data |
| keywords[6].score | 0.5063692331314087 |
| keywords[6].display_name | Synthetic data |
| keywords[7].id | https://openalex.org/keywords/time-series |
| keywords[7].score | 0.48905596137046814 |
| keywords[7].display_name | Time series |
| keywords[8].id | https://openalex.org/keywords/series |
| keywords[8].score | 0.4577862024307251 |
| keywords[8].display_name | Series (stratigraphy) |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.44571542739868164 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/algorithm |
| keywords[10].score | 0.42843377590179443 |
| keywords[10].display_name | Algorithm |
| keywords[11].id | https://openalex.org/keywords/range |
| keywords[11].score | 0.4178510904312134 |
| keywords[11].display_name | Range (aeronautics) |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.397023469209671 |
| keywords[12].display_name | Machine learning |
| keywords[13].id | https://openalex.org/keywords/econometrics |
| keywords[13].score | 0.350034236907959 |
| keywords[13].display_name | Econometrics |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.2088591754436493 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/statistics |
| keywords[15].score | 0.16001349687576294 |
| keywords[15].display_name | Statistics |
| keywords[16].id | https://openalex.org/keywords/psychology |
| keywords[16].score | 0.1118907630443573 |
| keywords[16].display_name | Psychology |
| keywords[17].id | https://openalex.org/keywords/engineering |
| keywords[17].score | 0.08917394280433655 |
| keywords[17].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2208.03489 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2208.03489 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2208.03489 |
| locations[1].id | doi:10.48550/arxiv.2208.03489 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2208.03489 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5024608138 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5518-0027 |
| authorships[0].author.display_name | Jacob Goldin |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Goldin, Jacob |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5017688180 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7121-5696 |
| authorships[1].author.display_name | Julian Nyarko |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Nyarko, Julian |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5110938387 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Justin Young |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Young, Justin |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2208.03489 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Forecasting Algorithms for Causal Inference with Panel Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10845 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9828000068664551 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Advanced Causal Inference Techniques |
| related_works | https://openalex.org/W3201448254, https://openalex.org/W4286970243, https://openalex.org/W2066431708, https://openalex.org/W4384133558, https://openalex.org/W3025615835, https://openalex.org/W173210993, https://openalex.org/W2390660599, https://openalex.org/W4372260129, https://openalex.org/W2510029442, https://openalex.org/W2908470102 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2208.03489 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2208.03489 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2208.03489 |
| primary_location.id | pmh:oai:arXiv.org:2208.03489 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2208.03489 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2208.03489 |
| publication_date | 2022-08-06 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 7, 16, 35, 43 |
| abstract_inverted_index.An | 77 |
| abstract_inverted_index.We | 14 |
| abstract_inverted_index.be | 97 |
| abstract_inverted_index.in | 10, 92, 103 |
| abstract_inverted_index.is | 6, 82 |
| abstract_inverted_index.of | 34, 45, 79 |
| abstract_inverted_index.or | 64 |
| abstract_inverted_index.to | 27, 69, 99 |
| abstract_inverted_index.Our | 87 |
| abstract_inverted_index.and | 61 |
| abstract_inverted_index.can | 96 |
| abstract_inverted_index.for | 20, 84 |
| abstract_inverted_index.had | 38 |
| abstract_inverted_index.how | 90 |
| abstract_inverted_index.not | 40 |
| abstract_inverted_index.the | 31, 47, 93 |
| abstract_inverted_index.(the | 24 |
| abstract_inverted_index.core | 8 |
| abstract_inverted_index.data | 5, 105 |
| abstract_inverted_index.deep | 17 |
| abstract_inverted_index.more | 28, 65 |
| abstract_inverted_index.this | 80 |
| abstract_inverted_index.time | 21 |
| abstract_inverted_index.unit | 37 |
| abstract_inverted_index.use. | 86 |
| abstract_inverted_index.with | 3 |
| abstract_inverted_index.adapt | 15 |
| abstract_inverted_index.fixed | 59 |
| abstract_inverted_index.panel | 4, 104 |
| abstract_inverted_index.range | 44 |
| abstract_inverted_index.Across | 42 |
| abstract_inverted_index.causal | 1, 101 |
| abstract_inverted_index.impute | 30 |
| abstract_inverted_index.matrix | 75 |
| abstract_inverted_index.neural | 18 |
| abstract_inverted_index.public | 85 |
| abstract_inverted_index.series | 22 |
| abstract_inverted_index.social | 11 |
| abstract_inverted_index.N-BEATS | 25 |
| abstract_inverted_index.attains | 62 |
| abstract_inverted_index.improve | 100 |
| abstract_inverted_index.methods | 55, 72 |
| abstract_inverted_index.results | 88 |
| abstract_inverted_index.science | 12 |
| abstract_inverted_index.treated | 36 |
| abstract_inverted_index.two-way | 58 |
| abstract_inverted_index.accurate | 66 |
| abstract_inverted_index.advances | 91 |
| abstract_inverted_index.commonly | 53 |
| abstract_inverted_index.compared | 68 |
| abstract_inverted_index.employed | 54 |
| abstract_inverted_index.proposed | 71 |
| abstract_inverted_index.recently | 70 |
| abstract_inverted_index.available | 83 |
| abstract_inverted_index.challenge | 9 |
| abstract_inverted_index.controls, | 57 |
| abstract_inverted_index.effects), | 60 |
| abstract_inverted_index.estimator | 49, 81 |
| abstract_inverted_index.evolution | 33 |
| abstract_inverted_index.harnessed | 98 |
| abstract_inverted_index.highlight | 89 |
| abstract_inverted_index.inference | 2, 102 |
| abstract_inverted_index.occurred. | 41 |
| abstract_inverted_index.research. | 13 |
| abstract_inverted_index.resulting | 48 |
| abstract_inverted_index.settings, | 46 |
| abstract_inverted_index.settings. | 106 |
| abstract_inverted_index.treatment | 39 |
| abstract_inverted_index.(synthetic | 56, 73 |
| abstract_inverted_index.Conducting | 0 |
| abstract_inverted_index.accurately | 29 |
| abstract_inverted_index.algorithm) | 26 |
| abstract_inverted_index.comparable | 63 |
| abstract_inverted_index.literature | 95 |
| abstract_inverted_index.forecasting | 23, 94 |
| abstract_inverted_index.outperforms | 52 |
| abstract_inverted_index.performance | 67 |
| abstract_inverted_index.architecture | 19 |
| abstract_inverted_index.completion). | 76 |
| abstract_inverted_index.significantly | 51 |
| abstract_inverted_index.(``SyNBEATS'') | 50 |
| abstract_inverted_index.counterfactual | 32 |
| abstract_inverted_index.implementation | 78 |
| abstract_inverted_index.difference-in-differences, | 74 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |