Forecasting Bank Profitability Using Deep Learning and Macroeconomic Indicators: A Comparative Model Study Article Swipe
Ashadujjaman Sajal
,
Md. Nazim Uddin Chy
,
Sakib Salam Jamee
,
Mohammad Nasir Uddin
,
Md Sayem Khan
,
Arun Kumar Gharami
,
Shaidul Islam Suhan
,
Mushtaq Ahmed
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.55640/business/volume06issue06-02
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.55640/business/volume06issue06-02
This study proposes a deep learning framework for forecasting bank profitability by integrating macroeconomic indicators with firm-level financial data. Using models such as LSTM, GRU, Transformer, and TCN—compared against traditional approaches like Linear Regression, Random Forest, and XGBoost—we evaluated predictive performance across multiple metrics. Results show the Transformer model achieved the best performance, with an R² score of 0.95 and 91% directional accuracy, outperforming all other models. The inclusion of macroeconomic variables significantly enhanced prediction accuracy. These findings highlight the effectiveness of attention-based deep learning models for financial forecasting in dynamic economic environments.
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.55640/business/volume06issue06-02
- https://www.iibajournal.org/index.php/iibeaj/article/download/67/67/148
- OA Status
- diamond
- Cited By
- 3
- References
- 34
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411298738
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411298738Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.55640/business/volume06issue06-02Digital Object Identifier
- Title
-
Forecasting Bank Profitability Using Deep Learning and Macroeconomic Indicators: A Comparative Model StudyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-14Full publication date if available
- Authors
-
Ashadujjaman Sajal, Md. Nazim Uddin Chy, Sakib Salam Jamee, Mohammad Nasir Uddin, Md Sayem Khan, Arun Kumar Gharami, Shaidul Islam Suhan, Mushtaq AhmedList of authors in order
- Landing page
-
https://doi.org/10.55640/business/volume06issue06-02Publisher landing page
- PDF URL
-
https://www.iibajournal.org/index.php/iibeaj/article/download/67/67/148Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.iibajournal.org/index.php/iibeaj/article/download/67/67/148Direct OA link when available
- Concepts
-
Profitability index, Econometrics, Economics, Computer science, Artificial intelligence, FinanceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3Per-year citation counts (last 5 years)
- References (count)
-
34Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411298738 |
|---|---|
| doi | https://doi.org/10.55640/business/volume06issue06-02 |
| ids.doi | https://doi.org/10.55640/business/volume06issue06-02 |
| ids.openalex | https://openalex.org/W4411298738 |
| fwci | 16.52046332 |
| type | article |
| title | Forecasting Bank Profitability Using Deep Learning and Macroeconomic Indicators: A Comparative Model Study |
| biblio.issue | 06 |
| biblio.volume | 06 |
| biblio.last_page | 20 |
| biblio.first_page | 08 |
| topics[0].id | https://openalex.org/T11326 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.8003000020980835 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Stock Market Forecasting Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C129361004 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7671587467193604 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2470236 |
| concepts[0].display_name | Profitability index |
| concepts[1].id | https://openalex.org/C149782125 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5309562087059021 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[1].display_name | Econometrics |
| concepts[2].id | https://openalex.org/C162324750 |
| concepts[2].level | 0 |
| concepts[2].score | 0.3886529207229614 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[2].display_name | Economics |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.3790378272533417 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.32435643672943115 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C10138342 |
| concepts[5].level | 1 |
| concepts[5].score | 0.16667327284812927 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q43015 |
| concepts[5].display_name | Finance |
| keywords[0].id | https://openalex.org/keywords/profitability-index |
| keywords[0].score | 0.7671587467193604 |
| keywords[0].display_name | Profitability index |
| keywords[1].id | https://openalex.org/keywords/econometrics |
| keywords[1].score | 0.5309562087059021 |
| keywords[1].display_name | Econometrics |
| keywords[2].id | https://openalex.org/keywords/economics |
| keywords[2].score | 0.3886529207229614 |
| keywords[2].display_name | Economics |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.3790378272533417 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.32435643672943115 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/finance |
| keywords[5].score | 0.16667327284812927 |
| keywords[5].display_name | Finance |
| language | en |
| locations[0].id | doi:10.55640/business/volume06issue06-02 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210237776 |
| locations[0].source.issn | 2375-9607, 2375-9615 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2375-9607 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Interdisciplinary Business Economics Advancement Journal |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | https://www.iibajournal.org/index.php/iibeaj/article/download/67/67/148 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Interdisciplinary Business Economics Advancement Journal |
| locations[0].landing_page_url | https://doi.org/10.55640/business/volume06issue06-02 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5114756663 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Ashadujjaman Sajal |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ashadujjaman Sajal |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5000055962 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2329-0867 |
| authorships[1].author.display_name | Md. Nazim Uddin Chy |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Md Sajedul Karim Chy |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5116281183 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Sakib Salam Jamee |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sakib Salam Jamee |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100655873 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5331-3906 |
| authorships[3].author.display_name | Mohammad Nasir Uddin |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Mohammad Nasir Uddin |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5111521427 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Md Sayem Khan |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Md Sayem Khan |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5116697666 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Arun Kumar Gharami |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Arun Kumar Gharami |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5117081107 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Shaidul Islam Suhan |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Shaidul Islam Suhan |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5002897338 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-7576-2531 |
| authorships[7].author.display_name | Mushtaq Ahmed |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Mousumi Ahmed |
| authorships[7].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.iibajournal.org/index.php/iibeaj/article/download/67/67/148 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-06-14T00:00:00 |
| display_name | Forecasting Bank Profitability Using Deep Learning and Macroeconomic Indicators: A Comparative Model Study |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11326 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.8003000020980835 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Stock Market Forecasting Methods |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W4391375266, https://openalex.org/W3125099825, https://openalex.org/W25115902, https://openalex.org/W2753408573, https://openalex.org/W4285147705, https://openalex.org/W1986338457, https://openalex.org/W2066844180, https://openalex.org/W4293192099 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 1 |
| best_oa_location.id | doi:10.55640/business/volume06issue06-02 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210237776 |
| best_oa_location.source.issn | 2375-9607, 2375-9615 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2375-9607 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Interdisciplinary Business Economics Advancement Journal |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.iibajournal.org/index.php/iibeaj/article/download/67/67/148 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Interdisciplinary Business Economics Advancement Journal |
| best_oa_location.landing_page_url | https://doi.org/10.55640/business/volume06issue06-02 |
| primary_location.id | doi:10.55640/business/volume06issue06-02 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210237776 |
| primary_location.source.issn | 2375-9607, 2375-9615 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2375-9607 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Interdisciplinary Business Economics Advancement Journal |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | https://www.iibajournal.org/index.php/iibeaj/article/download/67/67/148 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Interdisciplinary Business Economics Advancement Journal |
| primary_location.landing_page_url | https://doi.org/10.55640/business/volume06issue06-02 |
| publication_date | 2025-06-14 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W1990176981, https://openalex.org/W2734777338, https://openalex.org/W3121626226, https://openalex.org/W2624385633, https://openalex.org/W2956056332, https://openalex.org/W2032170121, https://openalex.org/W3016544456, https://openalex.org/W3171884590, https://openalex.org/W3041550768, https://openalex.org/W4411298738, https://openalex.org/W4405770884, https://openalex.org/W4406704681, https://openalex.org/W4407002269, https://openalex.org/W4405215985, https://openalex.org/W4407602324, https://openalex.org/W4389050732, https://openalex.org/W4407007602, https://openalex.org/W4385547136, https://openalex.org/W4404394113, https://openalex.org/W4408208092, https://openalex.org/W4408208027, https://openalex.org/W4408498773, https://openalex.org/W4409969280, https://openalex.org/W4406278896, https://openalex.org/W4405886053, https://openalex.org/W4406278977, https://openalex.org/W4405886005, https://openalex.org/W4408499073, https://openalex.org/W4410266657, https://openalex.org/W4410267237, https://openalex.org/W4409274428, https://openalex.org/W4409272508, https://openalex.org/W4411030629, https://openalex.org/W4410926480 |
| referenced_works_count | 34 |
| abstract_inverted_index.a | 3 |
| abstract_inverted_index.an | 54 |
| abstract_inverted_index.as | 22 |
| abstract_inverted_index.by | 11 |
| abstract_inverted_index.in | 89 |
| abstract_inverted_index.of | 57, 69, 81 |
| abstract_inverted_index.91% | 60 |
| abstract_inverted_index.R² | 55 |
| abstract_inverted_index.The | 67 |
| abstract_inverted_index.all | 64 |
| abstract_inverted_index.and | 26, 36, 59 |
| abstract_inverted_index.for | 7, 86 |
| abstract_inverted_index.the | 46, 50, 79 |
| abstract_inverted_index.0.95 | 58 |
| abstract_inverted_index.GRU, | 24 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.bank | 9 |
| abstract_inverted_index.best | 51 |
| abstract_inverted_index.deep | 4, 83 |
| abstract_inverted_index.like | 31 |
| abstract_inverted_index.show | 45 |
| abstract_inverted_index.such | 21 |
| abstract_inverted_index.with | 15, 53 |
| abstract_inverted_index.LSTM, | 23 |
| abstract_inverted_index.These | 76 |
| abstract_inverted_index.Using | 19 |
| abstract_inverted_index.data. | 18 |
| abstract_inverted_index.model | 48 |
| abstract_inverted_index.other | 65 |
| abstract_inverted_index.score | 56 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.Linear | 32 |
| abstract_inverted_index.Random | 34 |
| abstract_inverted_index.across | 41 |
| abstract_inverted_index.models | 20, 85 |
| abstract_inverted_index.Forest, | 35 |
| abstract_inverted_index.Results | 44 |
| abstract_inverted_index.against | 28 |
| abstract_inverted_index.dynamic | 90 |
| abstract_inverted_index.models. | 66 |
| abstract_inverted_index.achieved | 49 |
| abstract_inverted_index.economic | 91 |
| abstract_inverted_index.enhanced | 73 |
| abstract_inverted_index.findings | 77 |
| abstract_inverted_index.learning | 5, 84 |
| abstract_inverted_index.metrics. | 43 |
| abstract_inverted_index.multiple | 42 |
| abstract_inverted_index.proposes | 2 |
| abstract_inverted_index.accuracy, | 62 |
| abstract_inverted_index.accuracy. | 75 |
| abstract_inverted_index.evaluated | 38 |
| abstract_inverted_index.financial | 17, 87 |
| abstract_inverted_index.framework | 6 |
| abstract_inverted_index.highlight | 78 |
| abstract_inverted_index.inclusion | 68 |
| abstract_inverted_index.variables | 71 |
| abstract_inverted_index.approaches | 30 |
| abstract_inverted_index.firm-level | 16 |
| abstract_inverted_index.indicators | 14 |
| abstract_inverted_index.prediction | 74 |
| abstract_inverted_index.predictive | 39 |
| abstract_inverted_index.Regression, | 33 |
| abstract_inverted_index.Transformer | 47 |
| abstract_inverted_index.directional | 61 |
| abstract_inverted_index.forecasting | 8, 88 |
| abstract_inverted_index.integrating | 12 |
| abstract_inverted_index.performance | 40 |
| abstract_inverted_index.traditional | 29 |
| abstract_inverted_index.Transformer, | 25 |
| abstract_inverted_index.XGBoost—we | 37 |
| abstract_inverted_index.performance, | 52 |
| abstract_inverted_index.effectiveness | 80 |
| abstract_inverted_index.environments. | 92 |
| abstract_inverted_index.macroeconomic | 13, 70 |
| abstract_inverted_index.outperforming | 63 |
| abstract_inverted_index.profitability | 10 |
| abstract_inverted_index.significantly | 72 |
| abstract_inverted_index.TCN—compared | 27 |
| abstract_inverted_index.attention-based | 82 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.97804174 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |