Forecasting Low Frequency Macroeconomic Events with High Frequency Data Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.20955/wp.2020.028
High-frequency …nancial and economic indicators are usually time-aggregated before computing forecasts of macroeconomic events, such as recessions.We propose a mixedfrequency alternative that delivers high-frequency probability forecasts (including their con…dence bands) for low-frequency events.The new approach is compared with single-frequency alternatives using loss functions for rare-event forecasting.We …nd: (i) the weekly-sampled term spread improves over the monthly-sampled to predict NBER recessions, (ii) the predictive content of …nancial variables is supplementary to economic activity for forecasts of vulnerability events, and (iii) a weekly activity index can date the 2020 business cycle peak in real-time using a mixed-frequency …ltering.
Related Topics
- Type
- report
- Language
- en
- Landing Page
- https://doi.org/10.20955/wp.2020.028
- https://s3.amazonaws.com/real.stlouisfed.org/wp/2020/2020-028.pdf
- OA Status
- gold
- Cited By
- 2
- References
- 29
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3085937513
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3085937513Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.20955/wp.2020.028Digital Object Identifier
- Title
-
Forecasting Low Frequency Macroeconomic Events with High Frequency DataWork title
- Type
-
reportOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-01Full publication date if available
- Authors
-
Michael T. Owyang, Ana Beatriz GalvãoList of authors in order
- Landing page
-
https://doi.org/10.20955/wp.2020.028Publisher landing page
- PDF URL
-
https://s3.amazonaws.com/real.stlouisfed.org/wp/2020/2020-028.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://s3.amazonaws.com/real.stlouisfed.org/wp/2020/2020-028.pdfDirect OA link when available
- Concepts
-
Econometrics, Economics, Computer scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
29Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3085937513 |
|---|---|
| doi | https://doi.org/10.20955/wp.2020.028 |
| ids.doi | https://doi.org/10.20955/wp.2020.028 |
| ids.mag | 3085937513 |
| ids.openalex | https://openalex.org/W3085937513 |
| fwci | |
| type | report |
| title | Forecasting Low Frequency Macroeconomic Events with High Frequency Data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10007 |
| topics[0].field.id | https://openalex.org/fields/20 |
| topics[0].field.display_name | Economics, Econometrics and Finance |
| topics[0].score | 0.7879999876022339 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2000 |
| topics[0].subfield.display_name | General Economics, Econometrics and Finance |
| topics[0].display_name | Monetary Policy and Economic Impact |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C149782125 |
| concepts[0].level | 1 |
| concepts[0].score | 0.44756853580474854 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[0].display_name | Econometrics |
| concepts[1].id | https://openalex.org/C162324750 |
| concepts[1].level | 0 |
| concepts[1].score | 0.3498459458351135 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[1].display_name | Economics |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.3315888047218323 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| keywords[0].id | https://openalex.org/keywords/econometrics |
| keywords[0].score | 0.44756853580474854 |
| keywords[0].display_name | Econometrics |
| keywords[1].id | https://openalex.org/keywords/economics |
| keywords[1].score | 0.3498459458351135 |
| keywords[1].display_name | Economics |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.3315888047218323 |
| keywords[2].display_name | Computer science |
| language | en |
| locations[0].id | doi:10.20955/wp.2020.028 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | https://s3.amazonaws.com/real.stlouisfed.org/wp/2020/2020-028.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | report |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.20955/wp.2020.028 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5033238882 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2109-3432 |
| authorships[0].author.display_name | Michael T. Owyang |
| authorships[0].countries | GB, US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I39555362 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Warwick |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I77793887 |
| authorships[0].affiliations[1].raw_affiliation_string | Federal Reserve Bank of St. Louis |
| authorships[0].institutions[0].id | https://openalex.org/I39555362 |
| authorships[0].institutions[0].ror | https://ror.org/01a77tt86 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I39555362 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | University of Warwick |
| authorships[0].institutions[1].id | https://openalex.org/I77793887 |
| authorships[0].institutions[1].ror | https://ror.org/02skhjj30 |
| authorships[0].institutions[1].type | other |
| authorships[0].institutions[1].lineage | https://openalex.org/I1317239608, https://openalex.org/I77793887 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | Federal Reserve Bank of St. Louis |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Michael T. Owyang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Federal Reserve Bank of St. Louis, University of Warwick |
| authorships[1].author.id | https://openalex.org/A5022524992 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3263-9450 |
| authorships[1].author.display_name | Ana Beatriz Galvão |
| authorships[1].countries | GB, US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I77793887 |
| authorships[1].affiliations[0].raw_affiliation_string | Federal Reserve Bank of St. Louis |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I39555362 |
| authorships[1].affiliations[1].raw_affiliation_string | University of Warwick |
| authorships[1].institutions[0].id | https://openalex.org/I39555362 |
| authorships[1].institutions[0].ror | https://ror.org/01a77tt86 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I39555362 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | University of Warwick |
| authorships[1].institutions[1].id | https://openalex.org/I77793887 |
| authorships[1].institutions[1].ror | https://ror.org/02skhjj30 |
| authorships[1].institutions[1].type | other |
| authorships[1].institutions[1].lineage | https://openalex.org/I1317239608, https://openalex.org/I77793887 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | Federal Reserve Bank of St. Louis |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Ana B. Galvão |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Federal Reserve Bank of St. Louis, University of Warwick |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://s3.amazonaws.com/real.stlouisfed.org/wp/2020/2020-028.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Forecasting Low Frequency Macroeconomic Events with High Frequency Data |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10007 |
| primary_topic.field.id | https://openalex.org/fields/20 |
| primary_topic.field.display_name | Economics, Econometrics and Finance |
| primary_topic.score | 0.7879999876022339 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2000 |
| primary_topic.subfield.display_name | General Economics, Econometrics and Finance |
| primary_topic.display_name | Monetary Policy and Economic Impact |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2382290278, https://openalex.org/W2350741829, https://openalex.org/W2130043461, https://openalex.org/W2530322880, https://openalex.org/W1596801655 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.20955/wp.2020.028 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://s3.amazonaws.com/real.stlouisfed.org/wp/2020/2020-028.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | report |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.20955/wp.2020.028 |
| primary_location.id | doi:10.20955/wp.2020.028 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | https://s3.amazonaws.com/real.stlouisfed.org/wp/2020/2020-028.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | report |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.20955/wp.2020.028 |
| publication_date | 2020-01-01 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W1572076522, https://openalex.org/W3109246277, https://openalex.org/W2897659206, https://openalex.org/W411689321, https://openalex.org/W4254147434, https://openalex.org/W3126002642, https://openalex.org/W2922290901, https://openalex.org/W2738003060, https://openalex.org/W1493668964, https://openalex.org/W3121707609, https://openalex.org/W2626226140, https://openalex.org/W3125320951, https://openalex.org/W3093578674, https://openalex.org/W2884014038, https://openalex.org/W2118229469, https://openalex.org/W4253552061, https://openalex.org/W2921538327, https://openalex.org/W4285668188, https://openalex.org/W2168211193, https://openalex.org/W4230878755, https://openalex.org/W3122758267, https://openalex.org/W2059787748, https://openalex.org/W2145099905, https://openalex.org/W4302434451, https://openalex.org/W4255975151, https://openalex.org/W4312084883, https://openalex.org/W4231517135, https://openalex.org/W1967239989, https://openalex.org/W2073162999 |
| referenced_works_count | 29 |
| abstract_inverted_index.a | 18, 79, 93 |
| abstract_inverted_index.as | 15 |
| abstract_inverted_index.in | 90 |
| abstract_inverted_index.is | 35, 67 |
| abstract_inverted_index.of | 11, 64, 74 |
| abstract_inverted_index.to | 56, 69 |
| abstract_inverted_index.(i) | 47 |
| abstract_inverted_index.and | 2, 77 |
| abstract_inverted_index.are | 5 |
| abstract_inverted_index.can | 83 |
| abstract_inverted_index.for | 30, 43, 72 |
| abstract_inverted_index.new | 33 |
| abstract_inverted_index.the | 48, 54, 61, 85 |
| abstract_inverted_index.(ii) | 60 |
| abstract_inverted_index.2020 | 86 |
| abstract_inverted_index.NBER | 58 |
| abstract_inverted_index.date | 84 |
| abstract_inverted_index.loss | 41 |
| abstract_inverted_index.over | 53 |
| abstract_inverted_index.peak | 89 |
| abstract_inverted_index.such | 14 |
| abstract_inverted_index.term | 50 |
| abstract_inverted_index.that | 21 |
| abstract_inverted_index.with | 37 |
| abstract_inverted_index.(iii) | 78 |
| abstract_inverted_index.cycle | 88 |
| abstract_inverted_index.index | 82 |
| abstract_inverted_index.their | 27 |
| abstract_inverted_index.using | 40, 92 |
| abstract_inverted_index.bands) | 29 |
| abstract_inverted_index.before | 8 |
| abstract_inverted_index.spread | 51 |
| abstract_inverted_index.weekly | 80 |
| abstract_inverted_index.…nd: | 46 |
| abstract_inverted_index.content | 63 |
| abstract_inverted_index.events, | 13, 76 |
| abstract_inverted_index.predict | 57 |
| abstract_inverted_index.propose | 17 |
| abstract_inverted_index.usually | 6 |
| abstract_inverted_index.activity | 71, 81 |
| abstract_inverted_index.approach | 34 |
| abstract_inverted_index.business | 87 |
| abstract_inverted_index.compared | 36 |
| abstract_inverted_index.delivers | 22 |
| abstract_inverted_index.economic | 3, 70 |
| abstract_inverted_index.improves | 52 |
| abstract_inverted_index.computing | 9 |
| abstract_inverted_index.forecasts | 10, 25, 73 |
| abstract_inverted_index.functions | 42 |
| abstract_inverted_index.real-time | 91 |
| abstract_inverted_index.variables | 66 |
| abstract_inverted_index.(including | 26 |
| abstract_inverted_index.events.The | 32 |
| abstract_inverted_index.indicators | 4 |
| abstract_inverted_index.predictive | 62 |
| abstract_inverted_index.rare-event | 44 |
| abstract_inverted_index.…nancial | 1, 65 |
| abstract_inverted_index.alternative | 20 |
| abstract_inverted_index.con…dence | 28 |
| abstract_inverted_index.probability | 24 |
| abstract_inverted_index.recessions, | 59 |
| abstract_inverted_index.…ltering. | 95 |
| abstract_inverted_index.alternatives | 39 |
| abstract_inverted_index.low-frequency | 31 |
| abstract_inverted_index.macroeconomic | 12 |
| abstract_inverted_index.recessions.We | 16 |
| abstract_inverted_index.supplementary | 68 |
| abstract_inverted_index.vulnerability | 75 |
| abstract_inverted_index.High-frequency | 0 |
| abstract_inverted_index.forecasting.We | 45 |
| abstract_inverted_index.high-frequency | 23 |
| abstract_inverted_index.mixedfrequency | 19 |
| abstract_inverted_index.weekly-sampled | 49 |
| abstract_inverted_index.mixed-frequency | 94 |
| abstract_inverted_index.monthly-sampled | 55 |
| abstract_inverted_index.time-aggregated | 7 |
| abstract_inverted_index.single-frequency | 38 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |