Forecasting mortality rates with functional signatures Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2407.15461
This study introduces an innovative methodology for mortality forecasting, which integrates signature-based methods within the functional data framework of the Hyndman-Ullah (HU) model. This new approach, termed the Hyndman-Ullah with truncated signatures (HUts) model, aims to enhance the accuracy and robustness of mortality predictions. By utilizing signature regression, the HUts model is able to capture complex, nonlinear dependencies in mortality data which enhances forecasting accuracy across various demographic conditions. The model is applied to mortality data from 12 countries, comparing its forecasting performance against variants of the HU models across multiple forecast horizons. Our findings indicate that overall the HUts model not only provides more precise point forecasts but also shows robustness against data irregularities, such as those observed in countries with historical outliers. The integration of signature-based methods enables the HUts model to capture complex patterns in mortality data, making it a powerful tool for actuaries and demographers. Prediction intervals are also constructed with bootstrapping methods
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2407.15461
- https://arxiv.org/pdf/2407.15461
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406073110
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406073110Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2407.15461Digital Object Identifier
- Title
-
Forecasting mortality rates with functional signaturesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-22Full publication date if available
- Authors
-
Zhong Jing Yap, Dharini Pathmanathan, Sophie Dabo‐NiangList of authors in order
- Landing page
-
https://arxiv.org/abs/2407.15461Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2407.15461Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2407.15461Direct OA link when available
- Concepts
-
Econometrics, Economics, Computer scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406073110 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2407.15461 |
| ids.doi | https://doi.org/10.48550/arxiv.2407.15461 |
| ids.openalex | https://openalex.org/W4406073110 |
| fwci | 0.0 |
| type | preprint |
| title | Forecasting mortality rates with functional signatures |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12011 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 0.9919000267982483 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3317 |
| topics[0].subfield.display_name | Demography |
| topics[0].display_name | Insurance, Mortality, Demography, Risk Management |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C149782125 |
| concepts[0].level | 1 |
| concepts[0].score | 0.45490536093711853 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[0].display_name | Econometrics |
| concepts[1].id | https://openalex.org/C162324750 |
| concepts[1].level | 0 |
| concepts[1].score | 0.36917203664779663 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[1].display_name | Economics |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.3264043927192688 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| keywords[0].id | https://openalex.org/keywords/econometrics |
| keywords[0].score | 0.45490536093711853 |
| keywords[0].display_name | Econometrics |
| keywords[1].id | https://openalex.org/keywords/economics |
| keywords[1].score | 0.36917203664779663 |
| keywords[1].display_name | Economics |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.3264043927192688 |
| keywords[2].display_name | Computer science |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2407.15461 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2407.15461 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2407.15461 |
| locations[1].id | doi:10.48550/arxiv.2407.15461 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2407.15461 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5115772072 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Zhong Jing Yap |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yap, Zhong Jing |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5016896235 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3279-4031 |
| authorships[1].author.display_name | Dharini Pathmanathan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Pathmanathan, Dharini |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5049255136 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4000-6752 |
| authorships[2].author.display_name | Sophie Dabo‐Niang |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Dabo-Niang, Sophie |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2407.15461 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Forecasting mortality rates with functional signatures |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12011 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 0.9919000267982483 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3317 |
| primary_topic.subfield.display_name | Demography |
| primary_topic.display_name | Insurance, Mortality, Demography, Risk Management |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W4391375266, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2407.15461 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2407.15461 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2407.15461 |
| primary_location.id | pmh:oai:arXiv.org:2407.15461 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2407.15461 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2407.15461 |
| publication_date | 2024-07-22 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 142 |
| abstract_inverted_index.12 | 77 |
| abstract_inverted_index.By | 44 |
| abstract_inverted_index.HU | 87 |
| abstract_inverted_index.an | 3 |
| abstract_inverted_index.as | 116 |
| abstract_inverted_index.in | 58, 119, 137 |
| abstract_inverted_index.is | 51, 71 |
| abstract_inverted_index.it | 141 |
| abstract_inverted_index.of | 18, 41, 85, 126 |
| abstract_inverted_index.to | 35, 53, 73, 133 |
| abstract_inverted_index.Our | 93 |
| abstract_inverted_index.The | 69, 124 |
| abstract_inverted_index.and | 39, 147 |
| abstract_inverted_index.are | 151 |
| abstract_inverted_index.but | 108 |
| abstract_inverted_index.for | 6, 145 |
| abstract_inverted_index.its | 80 |
| abstract_inverted_index.new | 24 |
| abstract_inverted_index.not | 101 |
| abstract_inverted_index.the | 14, 19, 27, 37, 48, 86, 98, 130 |
| abstract_inverted_index.(HU) | 21 |
| abstract_inverted_index.HUts | 49, 99, 131 |
| abstract_inverted_index.This | 0, 23 |
| abstract_inverted_index.able | 52 |
| abstract_inverted_index.aims | 34 |
| abstract_inverted_index.also | 109, 152 |
| abstract_inverted_index.data | 16, 60, 75, 113 |
| abstract_inverted_index.from | 76 |
| abstract_inverted_index.more | 104 |
| abstract_inverted_index.only | 102 |
| abstract_inverted_index.such | 115 |
| abstract_inverted_index.that | 96 |
| abstract_inverted_index.tool | 144 |
| abstract_inverted_index.with | 29, 121, 154 |
| abstract_inverted_index.data, | 139 |
| abstract_inverted_index.model | 50, 70, 100, 132 |
| abstract_inverted_index.point | 106 |
| abstract_inverted_index.shows | 110 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.those | 117 |
| abstract_inverted_index.which | 9, 61 |
| abstract_inverted_index.(HUts) | 32 |
| abstract_inverted_index.across | 65, 89 |
| abstract_inverted_index.making | 140 |
| abstract_inverted_index.model, | 33 |
| abstract_inverted_index.model. | 22 |
| abstract_inverted_index.models | 88 |
| abstract_inverted_index.termed | 26 |
| abstract_inverted_index.within | 13 |
| abstract_inverted_index.against | 83, 112 |
| abstract_inverted_index.applied | 72 |
| abstract_inverted_index.capture | 54, 134 |
| abstract_inverted_index.complex | 135 |
| abstract_inverted_index.enables | 129 |
| abstract_inverted_index.enhance | 36 |
| abstract_inverted_index.methods | 12, 128, 156 |
| abstract_inverted_index.overall | 97 |
| abstract_inverted_index.precise | 105 |
| abstract_inverted_index.various | 66 |
| abstract_inverted_index.accuracy | 38, 64 |
| abstract_inverted_index.complex, | 55 |
| abstract_inverted_index.enhances | 62 |
| abstract_inverted_index.findings | 94 |
| abstract_inverted_index.forecast | 91 |
| abstract_inverted_index.indicate | 95 |
| abstract_inverted_index.multiple | 90 |
| abstract_inverted_index.observed | 118 |
| abstract_inverted_index.patterns | 136 |
| abstract_inverted_index.powerful | 143 |
| abstract_inverted_index.provides | 103 |
| abstract_inverted_index.variants | 84 |
| abstract_inverted_index.actuaries | 146 |
| abstract_inverted_index.approach, | 25 |
| abstract_inverted_index.comparing | 79 |
| abstract_inverted_index.countries | 120 |
| abstract_inverted_index.forecasts | 107 |
| abstract_inverted_index.framework | 17 |
| abstract_inverted_index.horizons. | 92 |
| abstract_inverted_index.intervals | 150 |
| abstract_inverted_index.mortality | 7, 42, 59, 74, 138 |
| abstract_inverted_index.nonlinear | 56 |
| abstract_inverted_index.outliers. | 123 |
| abstract_inverted_index.signature | 46 |
| abstract_inverted_index.truncated | 30 |
| abstract_inverted_index.utilizing | 45 |
| abstract_inverted_index.Prediction | 149 |
| abstract_inverted_index.countries, | 78 |
| abstract_inverted_index.functional | 15 |
| abstract_inverted_index.historical | 122 |
| abstract_inverted_index.innovative | 4 |
| abstract_inverted_index.integrates | 10 |
| abstract_inverted_index.introduces | 2 |
| abstract_inverted_index.robustness | 40, 111 |
| abstract_inverted_index.signatures | 31 |
| abstract_inverted_index.conditions. | 68 |
| abstract_inverted_index.constructed | 153 |
| abstract_inverted_index.demographic | 67 |
| abstract_inverted_index.forecasting | 63, 81 |
| abstract_inverted_index.integration | 125 |
| abstract_inverted_index.methodology | 5 |
| abstract_inverted_index.performance | 82 |
| abstract_inverted_index.regression, | 47 |
| abstract_inverted_index.dependencies | 57 |
| abstract_inverted_index.forecasting, | 8 |
| abstract_inverted_index.predictions. | 43 |
| abstract_inverted_index.Hyndman-Ullah | 20, 28 |
| abstract_inverted_index.bootstrapping | 155 |
| abstract_inverted_index.demographers. | 148 |
| abstract_inverted_index.irregularities, | 114 |
| abstract_inverted_index.signature-based | 11, 127 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.53104391 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |