Forecasting Multiple Time Series With One-Sided Dynamic Principal Components Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.1080/01621459.2018.1520117
We define one-sided dynamic principal components (ODPC) for time series as linear combinations of the present and past values of the series that minimize the reconstruction mean squared error. Usually dynamic principal components have been defined as functions of past and future values of the series and therefore they are not appropriate for forecasting purposes. On the contrary, it is shown that the ODPC introduced in this article can be successfully used for forecasting high-dimensional multiple time series. An alternating least-squares algorithm to compute the proposed ODPC is presented. We prove that for stationary and ergodic time series the estimated values converge to their population analogs. We also prove that asymptotically, when both the number of series and the sample size go to infinity, if the data follow a dynamic factor model, the reconstruction obtained with ODPC converges in mean square to the common part of the factor model. The results of a simulation study show that the forecasts obtained with ODPC compare favorably with those obtained using other forecasting methods based on dynamic factor models. Supplementary materials for this article are available online.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1080/01621459.2018.1520117
- OA Status
- green
- Cited By
- 3
- References
- 37
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2749533234
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2749533234Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1080/01621459.2018.1520117Digital Object Identifier
- Title
-
Forecasting Multiple Time Series With One-Sided Dynamic Principal ComponentsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-09-11Full publication date if available
- Authors
-
Daniel Peña, Ezequiel Smucler, Vı́ctor J. YohaiList of authors in order
- Landing page
-
https://doi.org/10.1080/01621459.2018.1520117Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://figshare.com/articles/journal_contribution/Forecasting_Multiple_Time_Series_with_One-Sided_Dynamic_Principal_Components/7075103Direct OA link when available
- Concepts
-
Series (stratigraphy), Mathematics, Principal component analysis, Applied mathematics, Dynamic factor, Monte Carlo method, Ergodic theory, Factor analysis, Time series, Mean squared error, Statistics, Algorithm, Mathematical analysis, Biology, PaleontologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 2, 2019: 1Per-year citation counts (last 5 years)
- References (count)
-
37Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2749533234 |
|---|---|
| doi | https://doi.org/10.1080/01621459.2018.1520117 |
| ids.doi | https://doi.org/10.6084/m9.figshare.7075103.v1 |
| ids.mag | 2749533234 |
| ids.openalex | https://openalex.org/W2749533234 |
| fwci | 0.66434196 |
| type | preprint |
| title | Forecasting Multiple Time Series With One-Sided Dynamic Principal Components |
| biblio.issue | 528 |
| biblio.volume | 114 |
| biblio.last_page | 1694 |
| biblio.first_page | 1683 |
| topics[0].id | https://openalex.org/T11918 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9930999875068665 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Forecasting Techniques and Applications |
| topics[1].id | https://openalex.org/T13487 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9897000193595886 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2604 |
| topics[1].subfield.display_name | Applied Mathematics |
| topics[1].display_name | Statistical and numerical algorithms |
| topics[2].id | https://openalex.org/T11871 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.988099992275238 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Advanced Statistical Methods and Models |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C143724316 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7901074290275574 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q312468 |
| concepts[0].display_name | Series (stratigraphy) |
| concepts[1].id | https://openalex.org/C33923547 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5794071555137634 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[1].display_name | Mathematics |
| concepts[2].id | https://openalex.org/C27438332 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5320029854774475 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2873 |
| concepts[2].display_name | Principal component analysis |
| concepts[3].id | https://openalex.org/C28826006 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5295225977897644 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[3].display_name | Applied mathematics |
| concepts[4].id | https://openalex.org/C155702961 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4820302724838257 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5318975 |
| concepts[4].display_name | Dynamic factor |
| concepts[5].id | https://openalex.org/C19499675 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4734439551830292 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q232207 |
| concepts[5].display_name | Monte Carlo method |
| concepts[6].id | https://openalex.org/C122044880 |
| concepts[6].level | 2 |
| concepts[6].score | 0.45459747314453125 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5498822 |
| concepts[6].display_name | Ergodic theory |
| concepts[7].id | https://openalex.org/C10879293 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4517473876476288 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q726474 |
| concepts[7].display_name | Factor analysis |
| concepts[8].id | https://openalex.org/C151406439 |
| concepts[8].level | 2 |
| concepts[8].score | 0.44805335998535156 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q186588 |
| concepts[8].display_name | Time series |
| concepts[9].id | https://openalex.org/C139945424 |
| concepts[9].level | 2 |
| concepts[9].score | 0.41710662841796875 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[9].display_name | Mean squared error |
| concepts[10].id | https://openalex.org/C105795698 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3851723074913025 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[10].display_name | Statistics |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.32033777236938477 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C134306372 |
| concepts[12].level | 1 |
| concepts[12].score | 0.07208061218261719 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[12].display_name | Mathematical analysis |
| concepts[13].id | https://openalex.org/C86803240 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[13].display_name | Biology |
| concepts[14].id | https://openalex.org/C151730666 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[14].display_name | Paleontology |
| keywords[0].id | https://openalex.org/keywords/series |
| keywords[0].score | 0.7901074290275574 |
| keywords[0].display_name | Series (stratigraphy) |
| keywords[1].id | https://openalex.org/keywords/mathematics |
| keywords[1].score | 0.5794071555137634 |
| keywords[1].display_name | Mathematics |
| keywords[2].id | https://openalex.org/keywords/principal-component-analysis |
| keywords[2].score | 0.5320029854774475 |
| keywords[2].display_name | Principal component analysis |
| keywords[3].id | https://openalex.org/keywords/applied-mathematics |
| keywords[3].score | 0.5295225977897644 |
| keywords[3].display_name | Applied mathematics |
| keywords[4].id | https://openalex.org/keywords/dynamic-factor |
| keywords[4].score | 0.4820302724838257 |
| keywords[4].display_name | Dynamic factor |
| keywords[5].id | https://openalex.org/keywords/monte-carlo-method |
| keywords[5].score | 0.4734439551830292 |
| keywords[5].display_name | Monte Carlo method |
| keywords[6].id | https://openalex.org/keywords/ergodic-theory |
| keywords[6].score | 0.45459747314453125 |
| keywords[6].display_name | Ergodic theory |
| keywords[7].id | https://openalex.org/keywords/factor-analysis |
| keywords[7].score | 0.4517473876476288 |
| keywords[7].display_name | Factor analysis |
| keywords[8].id | https://openalex.org/keywords/time-series |
| keywords[8].score | 0.44805335998535156 |
| keywords[8].display_name | Time series |
| keywords[9].id | https://openalex.org/keywords/mean-squared-error |
| keywords[9].score | 0.41710662841796875 |
| keywords[9].display_name | Mean squared error |
| keywords[10].id | https://openalex.org/keywords/statistics |
| keywords[10].score | 0.3851723074913025 |
| keywords[10].display_name | Statistics |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.32033777236938477 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[12].score | 0.07208061218261719 |
| keywords[12].display_name | Mathematical analysis |
| language | en |
| locations[0].id | doi:10.1080/01621459.2018.1520117 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4394736638 |
| locations[0].source.issn | 0162-1459, 1537-274X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0162-1459 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of the American Statistical Association |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of the American Statistical Association |
| locations[0].landing_page_url | https://doi.org/10.1080/01621459.2018.1520117 |
| locations[1].id | pmh:oai:figshare.com:article/7075103 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400572 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | OPAL (Open@LaTrobe) (La Trobe University) |
| locations[1].source.host_organization | https://openalex.org/I196829312 |
| locations[1].source.host_organization_name | La Trobe University |
| locations[1].source.host_organization_lineage | https://openalex.org/I196829312 |
| locations[1].license | cc-by |
| locations[1].pdf_url | https://figshare.com/articles/journal_contribution/Forecasting_Multiple_Time_Series_with_One-Sided_Dynamic_Principal_Components/7075103 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | |
| locations[2].id | pmh:oai:RePEc:taf:jnlasa:v:114:y:2019:i:528:p:1683-1694 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401271 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | RePEc: Research Papers in Economics |
| locations[2].source.host_organization | https://openalex.org/I77793887 |
| locations[2].source.host_organization_name | Federal Reserve Bank of St. Louis |
| locations[2].source.host_organization_lineage | https://openalex.org/I77793887 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://hdl.handle.net/10.1080/01621459.2018.1520117 |
| locations[3].id | pmh:oai:americanae.aecid.es:3927372 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400786 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Americanae (AECID Library) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | cc-by-nc-sa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | info:eu-repo/semantics/article |
| locations[3].license_id | https://openalex.org/licenses/cc-by-nc-sa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | reponame:CONICET Digital (CONICET) |
| locations[3].landing_page_url | http://americanae.aecid.es/americanae/es/registros/registro.do?tipoRegistro=MTD&idBib=3927372 |
| locations[4].id | pmh:oai:ri.conicet.gov.ar:11336/92383 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306401400 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | Conicet |
| locations[4].source.host_organization | https://openalex.org/I4210104196 |
| locations[4].source.host_organization_name | Centro Científico Tecnológico - Nordeste |
| locations[4].source.host_organization_lineage | https://openalex.org/I4210104196 |
| locations[4].license | cc-by-nc-sa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | info:eu-repo/semantics/article |
| locations[4].license_id | https://openalex.org/licenses/cc-by-nc-sa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | reponame:CONICET Digital (CONICET) |
| locations[4].landing_page_url | http://hdl.handle.net/11336/92383 |
| locations[5].id | doi:10.48550/arxiv.1708.04705 |
| locations[5].is_oa | True |
| locations[5].source.id | https://openalex.org/S4306400194 |
| locations[5].source.issn | |
| locations[5].source.type | repository |
| locations[5].source.is_oa | True |
| locations[5].source.issn_l | |
| locations[5].source.is_core | False |
| locations[5].source.is_in_doaj | False |
| locations[5].source.display_name | arXiv (Cornell University) |
| locations[5].source.host_organization | https://openalex.org/I205783295 |
| locations[5].source.host_organization_name | Cornell University |
| locations[5].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[5].license | |
| locations[5].pdf_url | |
| locations[5].version | |
| locations[5].raw_type | article |
| locations[5].license_id | |
| locations[5].is_accepted | False |
| locations[5].is_published | |
| locations[5].raw_source_name | |
| locations[5].landing_page_url | https://doi.org/10.48550/arxiv.1708.04705 |
| locations[6].id | doi:10.6084/m9.figshare.7075103 |
| locations[6].is_oa | True |
| locations[6].source | |
| locations[6].license | cc-by |
| locations[6].pdf_url | |
| locations[6].version | |
| locations[6].raw_type | article-journal |
| locations[6].license_id | https://openalex.org/licenses/cc-by |
| locations[6].is_accepted | False |
| locations[6].is_published | |
| locations[6].raw_source_name | |
| locations[6].landing_page_url | https://doi.org/10.6084/m9.figshare.7075103 |
| locations[7].id | doi:10.6084/m9.figshare.7075103.v1 |
| locations[7].is_oa | True |
| locations[7].source | |
| locations[7].license | cc-by |
| locations[7].pdf_url | |
| locations[7].version | |
| locations[7].raw_type | article-journal |
| locations[7].license_id | https://openalex.org/licenses/cc-by |
| locations[7].is_accepted | False |
| locations[7].is_published | |
| locations[7].raw_source_name | |
| locations[7].landing_page_url | https://doi.org/10.6084/m9.figshare.7075103.v1 |
| locations[8].id | doi:10.6084/m9.figshare.7075103.v2 |
| locations[8].is_oa | True |
| locations[8].source | |
| locations[8].license | cc-by |
| locations[8].pdf_url | |
| locations[8].version | |
| locations[8].raw_type | article-journal |
| locations[8].license_id | https://openalex.org/licenses/cc-by |
| locations[8].is_accepted | False |
| locations[8].is_published | |
| locations[8].raw_source_name | |
| locations[8].landing_page_url | https://doi.org/10.6084/m9.figshare.7075103.v2 |
| locations[9].id | doi:10.6084/m9.figshare.7075103.v3 |
| locations[9].is_oa | True |
| locations[9].source | |
| locations[9].license | cc-by |
| locations[9].pdf_url | |
| locations[9].version | |
| locations[9].raw_type | article-journal |
| locations[9].license_id | https://openalex.org/licenses/cc-by |
| locations[9].is_accepted | False |
| locations[9].is_published | |
| locations[9].raw_source_name | |
| locations[9].landing_page_url | https://doi.org/10.6084/m9.figshare.7075103.v3 |
| indexed_in | crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5088521043 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9137-1557 |
| authorships[0].author.display_name | Daniel Peña |
| authorships[0].countries | ES |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I50357001 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Statistics and Institute of Financial Big Data, Universidad Carlos III de Madrid, Getafe, Spain; |
| authorships[0].institutions[0].id | https://openalex.org/I50357001 |
| authorships[0].institutions[0].ror | https://ror.org/03ths8210 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I50357001 |
| authorships[0].institutions[0].country_code | ES |
| authorships[0].institutions[0].display_name | Universidad Carlos III de Madrid |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Daniel Peña |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Statistics and Institute of Financial Big Data, Universidad Carlos III de Madrid, Getafe, Spain; |
| authorships[1].author.id | https://openalex.org/A5063484192 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7600-4222 |
| authorships[1].author.display_name | Ezequiel Smucler |
| authorships[1].countries | AR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I232641801 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Mathematics and Statistics Universidad Torcuato Di Tella Buenos Aires Argentina |
| authorships[1].institutions[0].id | https://openalex.org/I232641801 |
| authorships[1].institutions[0].ror | https://ror.org/04sxme922 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I232641801 |
| authorships[1].institutions[0].country_code | AR |
| authorships[1].institutions[0].display_name | Universidad Torcuato Di Tella |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ezequiel Smucler |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Mathematics and Statistics Universidad Torcuato Di Tella Buenos Aires Argentina |
| authorships[2].author.id | https://openalex.org/A5110016441 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Vı́ctor J. Yohai |
| authorships[2].countries | AR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I151201029 |
| authorships[2].affiliations[0].raw_affiliation_string | CONICET, Buenos Aires, Argentina |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I24354313, https://openalex.org/I53241121 |
| authorships[2].affiliations[1].raw_affiliation_string | School of Exact and Natural Sciences, Universidad de Buenos Aires, Argentina; |
| authorships[2].institutions[0].id | https://openalex.org/I151201029 |
| authorships[2].institutions[0].ror | https://ror.org/03cqe8w59 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I151201029, https://openalex.org/I4210123736, https://openalex.org/I4387155568 |
| authorships[2].institutions[0].country_code | AR |
| authorships[2].institutions[0].display_name | Consejo Nacional de Investigaciones Científicas y Técnicas |
| authorships[2].institutions[1].id | https://openalex.org/I53241121 |
| authorships[2].institutions[1].ror | https://ror.org/05rxmkq09 |
| authorships[2].institutions[1].type | nonprofit |
| authorships[2].institutions[1].lineage | https://openalex.org/I53241121 |
| authorships[2].institutions[1].country_code | AR |
| authorships[2].institutions[1].display_name | Fundación Ciencias Exactas y Naturales |
| authorships[2].institutions[2].id | https://openalex.org/I24354313 |
| authorships[2].institutions[2].ror | https://ror.org/0081fs513 |
| authorships[2].institutions[2].type | education |
| authorships[2].institutions[2].lineage | https://openalex.org/I24354313 |
| authorships[2].institutions[2].country_code | AR |
| authorships[2].institutions[2].display_name | Universidad de Buenos Aires |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Victor J. Yohai |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | CONICET, Buenos Aires, Argentina, School of Exact and Natural Sciences, Universidad de Buenos Aires, Argentina; |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://figshare.com/articles/journal_contribution/Forecasting_Multiple_Time_Series_with_One-Sided_Dynamic_Principal_Components/7075103 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Forecasting Multiple Time Series With One-Sided Dynamic Principal Components |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11918 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9930999875068665 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Forecasting Techniques and Applications |
| related_works | https://openalex.org/W2903213216, https://openalex.org/W1984423090, https://openalex.org/W1881262782, https://openalex.org/W1559900853, https://openalex.org/W101896211, https://openalex.org/W2037493188, https://openalex.org/W2129150225, https://openalex.org/W2964181036, https://openalex.org/W1994024572, https://openalex.org/W1979144484, https://openalex.org/W2952394915, https://openalex.org/W2129524896, https://openalex.org/W2216629824, https://openalex.org/W2487589595, https://openalex.org/W2149560766, https://openalex.org/W2940370615, https://openalex.org/W2891144951, https://openalex.org/W2923458548, https://openalex.org/W2618146202, https://openalex.org/W2105432603 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2019 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 10 |
| best_oa_location.id | pmh:oai:figshare.com:article/7075103 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400572 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | OPAL (Open@LaTrobe) (La Trobe University) |
| best_oa_location.source.host_organization | https://openalex.org/I196829312 |
| best_oa_location.source.host_organization_name | La Trobe University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I196829312 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://figshare.com/articles/journal_contribution/Forecasting_Multiple_Time_Series_with_One-Sided_Dynamic_Principal_Components/7075103 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | |
| primary_location.id | doi:10.1080/01621459.2018.1520117 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4394736638 |
| primary_location.source.issn | 0162-1459, 1537-274X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0162-1459 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of the American Statistical Association |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of the American Statistical Association |
| primary_location.landing_page_url | https://doi.org/10.1080/01621459.2018.1520117 |
| publication_date | 2018-09-11 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W2799254577, https://openalex.org/W1977636215, https://openalex.org/W2159706540, https://openalex.org/W1970562500, https://openalex.org/W2070173743, https://openalex.org/W2797925168, https://openalex.org/W4247571494, https://openalex.org/W3122304752, https://openalex.org/W2040373108, https://openalex.org/W1991135386, https://openalex.org/W3125070724, https://openalex.org/W2016547905, https://openalex.org/W2008975375, https://openalex.org/W2316101143, https://openalex.org/W1898037979, https://openalex.org/W4300699025, https://openalex.org/W2241662248, https://openalex.org/W2030677701, https://openalex.org/W2116512828, https://openalex.org/W2092270509, https://openalex.org/W2257263437, https://openalex.org/W1975395389, https://openalex.org/W2164570713, https://openalex.org/W2062113971, https://openalex.org/W2266349331, https://openalex.org/W2503518175, https://openalex.org/W2282845610, https://openalex.org/W2963786589, https://openalex.org/W2079563517, https://openalex.org/W206177690, https://openalex.org/W2135046866, https://openalex.org/W2000769684, https://openalex.org/W2011627547, https://openalex.org/W2132598870, https://openalex.org/W3103988912, https://openalex.org/W1488435683, https://openalex.org/W2098301339 |
| referenced_works_count | 37 |
| abstract_inverted_index.a | 128, 152 |
| abstract_inverted_index.An | 78 |
| abstract_inverted_index.On | 55 |
| abstract_inverted_index.We | 0, 89, 106 |
| abstract_inverted_index.as | 10, 36 |
| abstract_inverted_index.be | 69 |
| abstract_inverted_index.go | 121 |
| abstract_inverted_index.if | 124 |
| abstract_inverted_index.in | 65, 138 |
| abstract_inverted_index.is | 59, 87 |
| abstract_inverted_index.it | 58 |
| abstract_inverted_index.of | 13, 19, 38, 43, 115, 145, 151 |
| abstract_inverted_index.on | 172 |
| abstract_inverted_index.to | 82, 102, 122, 141 |
| abstract_inverted_index.The | 149 |
| abstract_inverted_index.and | 16, 40, 46, 94, 117 |
| abstract_inverted_index.are | 49, 181 |
| abstract_inverted_index.can | 68 |
| abstract_inverted_index.for | 7, 52, 72, 92, 178 |
| abstract_inverted_index.not | 50 |
| abstract_inverted_index.the | 14, 20, 24, 44, 56, 62, 84, 98, 113, 118, 125, 132, 142, 146, 157 |
| abstract_inverted_index.ODPC | 63, 86, 136, 161 |
| abstract_inverted_index.also | 107 |
| abstract_inverted_index.been | 34 |
| abstract_inverted_index.both | 112 |
| abstract_inverted_index.data | 126 |
| abstract_inverted_index.have | 33 |
| abstract_inverted_index.mean | 26, 139 |
| abstract_inverted_index.part | 144 |
| abstract_inverted_index.past | 17, 39 |
| abstract_inverted_index.show | 155 |
| abstract_inverted_index.size | 120 |
| abstract_inverted_index.that | 22, 61, 91, 109, 156 |
| abstract_inverted_index.they | 48 |
| abstract_inverted_index.this | 66, 179 |
| abstract_inverted_index.time | 8, 76, 96 |
| abstract_inverted_index.used | 71 |
| abstract_inverted_index.when | 111 |
| abstract_inverted_index.with | 135, 160, 164 |
| abstract_inverted_index.based | 171 |
| abstract_inverted_index.other | 168 |
| abstract_inverted_index.prove | 90, 108 |
| abstract_inverted_index.shown | 60 |
| abstract_inverted_index.study | 154 |
| abstract_inverted_index.their | 103 |
| abstract_inverted_index.those | 165 |
| abstract_inverted_index.using | 167 |
| abstract_inverted_index.(ODPC) | 6 |
| abstract_inverted_index.common | 143 |
| abstract_inverted_index.define | 1 |
| abstract_inverted_index.error. | 28 |
| abstract_inverted_index.factor | 130, 147, 174 |
| abstract_inverted_index.follow | 127 |
| abstract_inverted_index.future | 41 |
| abstract_inverted_index.linear | 11 |
| abstract_inverted_index.model, | 131 |
| abstract_inverted_index.model. | 148 |
| abstract_inverted_index.number | 114 |
| abstract_inverted_index.sample | 119 |
| abstract_inverted_index.series | 9, 21, 45, 97, 116 |
| abstract_inverted_index.square | 140 |
| abstract_inverted_index.values | 18, 42, 100 |
| abstract_inverted_index.Usually | 29 |
| abstract_inverted_index.article | 67, 180 |
| abstract_inverted_index.compare | 162 |
| abstract_inverted_index.compute | 83 |
| abstract_inverted_index.defined | 35 |
| abstract_inverted_index.dynamic | 3, 30, 129, 173 |
| abstract_inverted_index.ergodic | 95 |
| abstract_inverted_index.methods | 170 |
| abstract_inverted_index.models. | 175 |
| abstract_inverted_index.online. | 183 |
| abstract_inverted_index.present | 15 |
| abstract_inverted_index.results | 150 |
| abstract_inverted_index.series. | 77 |
| abstract_inverted_index.squared | 27 |
| abstract_inverted_index.analogs. | 105 |
| abstract_inverted_index.converge | 101 |
| abstract_inverted_index.minimize | 23 |
| abstract_inverted_index.multiple | 75 |
| abstract_inverted_index.obtained | 134, 159, 166 |
| abstract_inverted_index.proposed | 85 |
| abstract_inverted_index.algorithm | 81 |
| abstract_inverted_index.available | 182 |
| abstract_inverted_index.contrary, | 57 |
| abstract_inverted_index.converges | 137 |
| abstract_inverted_index.estimated | 99 |
| abstract_inverted_index.favorably | 163 |
| abstract_inverted_index.forecasts | 158 |
| abstract_inverted_index.functions | 37 |
| abstract_inverted_index.infinity, | 123 |
| abstract_inverted_index.materials | 177 |
| abstract_inverted_index.one-sided | 2 |
| abstract_inverted_index.principal | 4, 31 |
| abstract_inverted_index.purposes. | 54 |
| abstract_inverted_index.therefore | 47 |
| abstract_inverted_index.components | 5, 32 |
| abstract_inverted_index.introduced | 64 |
| abstract_inverted_index.population | 104 |
| abstract_inverted_index.presented. | 88 |
| abstract_inverted_index.simulation | 153 |
| abstract_inverted_index.stationary | 93 |
| abstract_inverted_index.alternating | 79 |
| abstract_inverted_index.appropriate | 51 |
| abstract_inverted_index.forecasting | 53, 73, 169 |
| abstract_inverted_index.combinations | 12 |
| abstract_inverted_index.successfully | 70 |
| abstract_inverted_index.Supplementary | 176 |
| abstract_inverted_index.least-squares | 80 |
| abstract_inverted_index.reconstruction | 25, 133 |
| abstract_inverted_index.asymptotically, | 110 |
| abstract_inverted_index.high-dimensional | 74 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.72021817 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |