Forecasting the strength characteristics of concrete incorporating waste foundry sand using advance machine algorithms including deep learning Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1016/j.cscm.2023.e02459
The incorporation of waste foundry sand (WFS) into concrete has been recognized as a sustainable approach to improve the strength properties of waste foundry sand concrete (WFSC). However, machine learning (ML) techniques are still necessary to forecast the characteristics of WFSC and evaluate the dominant input features for the suitable mix design. For this purpose, the present work selected five ML-based techniques based on gene expression programming (GEP), deep neural network (DNN), and optimizable Gaussian process regressor (OGPR) to predict the mechanical characteristics of WFSC. To build up the predictive models, a database containing 397 values of compressive strength (CS) and 169 values of flexural strength (FS) is collected from published literature. The models' performance was evaluated via various statistical metrics and additionally, external validation criteria were employed to validate the developed models. Furthermore, the Shapley additive explanation (SHAP) was carried out to interpret the model's prediction. The DNN2 model exhibited superior performance, with R-values of 0.996 (training), 0.999 (testing), and 0.997 (validation) for the compressive strength estimation. In contrast, the GEP2 model showed poor accuracy in estimating the CS compared to other developed models, with R-values of 0.851, 0.901, and 0.844 for the training, testing, and validation sets, respectively. Similarly, for the flexural strength estimation, the DNN2 model provided R-values of 0.999 for training, 0.996 for testing, and 0.999 for validation sets, indicating its robust performance. The SHAP analysis revealed that the age, water-cement ratio, and coarse aggregate-to-cement ratio have the prime influence in determining flexural and compressive strength, respectively. The comparison of the models provided that the DNN2 model accurately estimated the output with high accuracy and lower error values and might be utilized in practical fields to reduce labor and cost by optimizing the mix combinations. Finally, for future studies, it is recommended to utilize ensemble and hybrid algorithms, as well as post-hoc explanatory techniques, to forecast the characteristics of WFSC accurately.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.cscm.2023.e02459
- OA Status
- gold
- Cited By
- 42
- References
- 158
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386573967
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386573967Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.cscm.2023.e02459Digital Object Identifier
- Title
-
Forecasting the strength characteristics of concrete incorporating waste foundry sand using advance machine algorithms including deep learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-09-09Full publication date if available
- Authors
-
Rayed Alyousef, Roz‐Ud‐Din Nassar, Majid Khan, Kiran Arif, Muhammad Fawad, Ahmed M. Hassan, Nivin A. GhamryList of authors in order
- Landing page
-
https://doi.org/10.1016/j.cscm.2023.e02459Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.cscm.2023.e02459Direct OA link when available
- Concepts
-
Foundry, Compressive strength, Flexural strength, Artificial neural network, Machine learning, Cement, Computer science, Algorithm, Gene expression programming, Predictive modelling, Aggregate (composite), Performance prediction, Artificial intelligence, Simulation, Engineering, Structural engineering, Materials science, Mechanical engineering, Composite materialTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
42Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 17, 2024: 20, 2023: 5Per-year citation counts (last 5 years)
- References (count)
-
158Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386573967 |
|---|---|
| doi | https://doi.org/10.1016/j.cscm.2023.e02459 |
| ids.doi | https://doi.org/10.1016/j.cscm.2023.e02459 |
| ids.openalex | https://openalex.org/W4386573967 |
| fwci | 7.74946707 |
| type | article |
| title | Forecasting the strength characteristics of concrete incorporating waste foundry sand using advance machine algorithms including deep learning |
| awards[0].id | https://openalex.org/G3999197234 |
| awards[0].funder_id | https://openalex.org/F4320311227 |
| awards[0].display_name | |
| awards[0].funder_award_id | PSAU/2023/01/206862 |
| awards[0].funder_display_name | Prince Sattam bin Abdulaziz University |
| biblio.issue | |
| biblio.volume | 19 |
| biblio.last_page | e02459 |
| biblio.first_page | e02459 |
| topics[0].id | https://openalex.org/T13140 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2210 |
| topics[0].subfield.display_name | Mechanical Engineering |
| topics[0].display_name | Materials Engineering and Processing |
| topics[1].id | https://openalex.org/T12190 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9434999823570251 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2215 |
| topics[1].subfield.display_name | Building and Construction |
| topics[1].display_name | Innovations in Concrete and Construction Materials |
| topics[2].id | https://openalex.org/T10717 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.933899998664856 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2210 |
| topics[2].subfield.display_name | Mechanical Engineering |
| topics[2].display_name | Aluminum Alloys Composites Properties |
| funders[0].id | https://openalex.org/F4320311227 |
| funders[0].ror | https://ror.org/04jt46d36 |
| funders[0].display_name | Prince Sattam bin Abdulaziz University |
| is_xpac | False |
| apc_list.value | 600 |
| apc_list.currency | USD |
| apc_list.value_usd | 600 |
| apc_paid.value | 600 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 600 |
| concepts[0].id | https://openalex.org/C2781087836 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7623933553695679 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q13883136 |
| concepts[0].display_name | Foundry |
| concepts[1].id | https://openalex.org/C30407753 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7086484432220459 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q186191 |
| concepts[1].display_name | Compressive strength |
| concepts[2].id | https://openalex.org/C178405089 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6393777132034302 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q857201 |
| concepts[2].display_name | Flexural strength |
| concepts[3].id | https://openalex.org/C50644808 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6183279156684875 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[3].display_name | Artificial neural network |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5439344644546509 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C523993062 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5313036441802979 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q45190 |
| concepts[5].display_name | Cement |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.5040854215621948 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4506171941757202 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C6980683 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4424777030944824 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5531551 |
| concepts[8].display_name | Gene expression programming |
| concepts[9].id | https://openalex.org/C45804977 |
| concepts[9].level | 2 |
| concepts[9].score | 0.43785518407821655 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7239673 |
| concepts[9].display_name | Predictive modelling |
| concepts[10].id | https://openalex.org/C4679612 |
| concepts[10].level | 2 |
| concepts[10].score | 0.43119797110557556 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q866298 |
| concepts[10].display_name | Aggregate (composite) |
| concepts[11].id | https://openalex.org/C2777115002 |
| concepts[11].level | 2 |
| concepts[11].score | 0.42695754766464233 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7168246 |
| concepts[11].display_name | Performance prediction |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3671583831310272 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C44154836 |
| concepts[13].level | 1 |
| concepts[13].score | 0.237004816532135 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q45045 |
| concepts[13].display_name | Simulation |
| concepts[14].id | https://openalex.org/C127413603 |
| concepts[14].level | 0 |
| concepts[14].score | 0.23081308603286743 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[14].display_name | Engineering |
| concepts[15].id | https://openalex.org/C66938386 |
| concepts[15].level | 1 |
| concepts[15].score | 0.21011456847190857 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q633538 |
| concepts[15].display_name | Structural engineering |
| concepts[16].id | https://openalex.org/C192562407 |
| concepts[16].level | 0 |
| concepts[16].score | 0.18051037192344666 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[16].display_name | Materials science |
| concepts[17].id | https://openalex.org/C78519656 |
| concepts[17].level | 1 |
| concepts[17].score | 0.11895868182182312 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[17].display_name | Mechanical engineering |
| concepts[18].id | https://openalex.org/C159985019 |
| concepts[18].level | 1 |
| concepts[18].score | 0.1029936671257019 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[18].display_name | Composite material |
| keywords[0].id | https://openalex.org/keywords/foundry |
| keywords[0].score | 0.7623933553695679 |
| keywords[0].display_name | Foundry |
| keywords[1].id | https://openalex.org/keywords/compressive-strength |
| keywords[1].score | 0.7086484432220459 |
| keywords[1].display_name | Compressive strength |
| keywords[2].id | https://openalex.org/keywords/flexural-strength |
| keywords[2].score | 0.6393777132034302 |
| keywords[2].display_name | Flexural strength |
| keywords[3].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[3].score | 0.6183279156684875 |
| keywords[3].display_name | Artificial neural network |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.5439344644546509 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/cement |
| keywords[5].score | 0.5313036441802979 |
| keywords[5].display_name | Cement |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.5040854215621948 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/algorithm |
| keywords[7].score | 0.4506171941757202 |
| keywords[7].display_name | Algorithm |
| keywords[8].id | https://openalex.org/keywords/gene-expression-programming |
| keywords[8].score | 0.4424777030944824 |
| keywords[8].display_name | Gene expression programming |
| keywords[9].id | https://openalex.org/keywords/predictive-modelling |
| keywords[9].score | 0.43785518407821655 |
| keywords[9].display_name | Predictive modelling |
| keywords[10].id | https://openalex.org/keywords/aggregate |
| keywords[10].score | 0.43119797110557556 |
| keywords[10].display_name | Aggregate (composite) |
| keywords[11].id | https://openalex.org/keywords/performance-prediction |
| keywords[11].score | 0.42695754766464233 |
| keywords[11].display_name | Performance prediction |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.3671583831310272 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/simulation |
| keywords[13].score | 0.237004816532135 |
| keywords[13].display_name | Simulation |
| keywords[14].id | https://openalex.org/keywords/engineering |
| keywords[14].score | 0.23081308603286743 |
| keywords[14].display_name | Engineering |
| keywords[15].id | https://openalex.org/keywords/structural-engineering |
| keywords[15].score | 0.21011456847190857 |
| keywords[15].display_name | Structural engineering |
| keywords[16].id | https://openalex.org/keywords/materials-science |
| keywords[16].score | 0.18051037192344666 |
| keywords[16].display_name | Materials science |
| keywords[17].id | https://openalex.org/keywords/mechanical-engineering |
| keywords[17].score | 0.11895868182182312 |
| keywords[17].display_name | Mechanical engineering |
| keywords[18].id | https://openalex.org/keywords/composite-material |
| keywords[18].score | 0.1029936671257019 |
| keywords[18].display_name | Composite material |
| language | en |
| locations[0].id | doi:10.1016/j.cscm.2023.e02459 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764881959 |
| locations[0].source.issn | 2214-5095 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2214-5095 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Case Studies in Construction Materials |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Case Studies in Construction Materials |
| locations[0].landing_page_url | https://doi.org/10.1016/j.cscm.2023.e02459 |
| locations[1].id | pmh:oai:doaj.org/article:899b628306cc4ceea316bb2318b11755 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Case Studies in Construction Materials, Vol 19, Iss , Pp e02459- (2023) |
| locations[1].landing_page_url | https://doaj.org/article/899b628306cc4ceea316bb2318b11755 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5026368254 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3821-5491 |
| authorships[0].author.display_name | Rayed Alyousef |
| authorships[0].countries | SA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I142608572 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia |
| authorships[0].institutions[0].id | https://openalex.org/I142608572 |
| authorships[0].institutions[0].ror | https://ror.org/04jt46d36 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I142608572 |
| authorships[0].institutions[0].country_code | SA |
| authorships[0].institutions[0].display_name | Prince Sattam Bin Abdulaziz University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rayed Alyousef |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia |
| authorships[1].author.id | https://openalex.org/A5089226299 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5296-0746 |
| authorships[1].author.display_name | Roz‐Ud‐Din Nassar |
| authorships[1].countries | AE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210153389 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Civil and Infrastructure Engineering, American University of Ras Al Khaimah, United Arab Emirates |
| authorships[1].institutions[0].id | https://openalex.org/I4210153389 |
| authorships[1].institutions[0].ror | https://ror.org/0440yjn92 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210153389 |
| authorships[1].institutions[0].country_code | AE |
| authorships[1].institutions[0].display_name | American University of Ras Al Khaimah |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Roz-Ud-Din Nassar |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Civil and Infrastructure Engineering, American University of Ras Al Khaimah, United Arab Emirates |
| authorships[2].author.id | https://openalex.org/A5082053893 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6629-4257 |
| authorships[2].author.display_name | Majid Khan |
| authorships[2].countries | PK |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I90610274 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Civil Engineering, University of Engineering and Technology, Peshawar, Pakistan |
| authorships[2].institutions[0].id | https://openalex.org/I90610274 |
| authorships[2].institutions[0].ror | https://ror.org/00p034093 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I90610274 |
| authorships[2].institutions[0].country_code | PK |
| authorships[2].institutions[0].display_name | University of Engineering and Technology Peshawar |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Majid Khan |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Department of Civil Engineering, University of Engineering and Technology, Peshawar, Pakistan |
| authorships[3].author.id | https://openalex.org/A5021030516 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3004-7067 |
| authorships[3].author.display_name | Kiran Arif |
| authorships[3].countries | PK |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I16076960 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science, COMSATS University Islamabad, Wah Campus 47040, Pakistan |
| authorships[3].institutions[0].id | https://openalex.org/I16076960 |
| authorships[3].institutions[0].ror | https://ror.org/00nqqvk19 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I16076960 |
| authorships[3].institutions[0].country_code | PK |
| authorships[3].institutions[0].display_name | COMSATS University Islamabad |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Kiran Arif |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Department of Computer Science, COMSATS University Islamabad, Wah Campus 47040, Pakistan |
| authorships[4].author.id | https://openalex.org/A5067496461 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4729-7289 |
| authorships[4].author.display_name | Muhammad Fawad |
| authorships[4].countries | HU, PL |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I29770179 |
| authorships[4].affiliations[0].raw_affiliation_string | Budapest University of Technology and Economics Hungary |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I119004910 |
| authorships[4].affiliations[1].raw_affiliation_string | Silesian University of Technology Poland |
| authorships[4].institutions[0].id | https://openalex.org/I29770179 |
| authorships[4].institutions[0].ror | https://ror.org/02w42ss30 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I29770179 |
| authorships[4].institutions[0].country_code | HU |
| authorships[4].institutions[0].display_name | Budapest University of Technology and Economics |
| authorships[4].institutions[1].id | https://openalex.org/I119004910 |
| authorships[4].institutions[1].ror | https://ror.org/02dyjk442 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I119004910 |
| authorships[4].institutions[1].country_code | PL |
| authorships[4].institutions[1].display_name | Silesian University of Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Muhammad Fawad |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Budapest University of Technology and Economics Hungary, Silesian University of Technology Poland |
| authorships[5].author.id | https://openalex.org/A5100653748 |
| authorships[5].author.orcid | https://orcid.org/0009-0002-7989-0466 |
| authorships[5].author.display_name | Ahmed M. Hassan |
| authorships[5].countries | EG |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I186217134 |
| authorships[5].affiliations[0].raw_affiliation_string | Faculty of engineering, Future University in Egypt |
| authorships[5].institutions[0].id | https://openalex.org/I186217134 |
| authorships[5].institutions[0].ror | https://ror.org/03s8c2x09 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I186217134 |
| authorships[5].institutions[0].country_code | EG |
| authorships[5].institutions[0].display_name | Future University in Egypt |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Ahmed M. Hassan |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | Faculty of engineering, Future University in Egypt |
| authorships[6].author.id | https://openalex.org/A5066252050 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Nivin A. Ghamry |
| authorships[6].countries | EG |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I145487455 |
| authorships[6].affiliations[0].raw_affiliation_string | Cairo university, Fuculty of Computers and Artificial intelligene, Giza, Egypt |
| authorships[6].institutions[0].id | https://openalex.org/I145487455 |
| authorships[6].institutions[0].ror | https://ror.org/03q21mh05 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I145487455 |
| authorships[6].institutions[0].country_code | EG |
| authorships[6].institutions[0].display_name | Cairo University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Nivin A. Ghamry |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | Cairo university, Fuculty of Computers and Artificial intelligene, Giza, Egypt |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.cscm.2023.e02459 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Forecasting the strength characteristics of concrete incorporating waste foundry sand using advance machine algorithms including deep learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13140 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2210 |
| primary_topic.subfield.display_name | Mechanical Engineering |
| primary_topic.display_name | Materials Engineering and Processing |
| related_works | https://openalex.org/W2648578256, https://openalex.org/W2803417426, https://openalex.org/W2966986544, https://openalex.org/W2397087612, https://openalex.org/W2547032137, https://openalex.org/W2110529327, https://openalex.org/W153340049, https://openalex.org/W2371116970, https://openalex.org/W2802138742, https://openalex.org/W561355174 |
| cited_by_count | 42 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 17 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 20 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.cscm.2023.e02459 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764881959 |
| best_oa_location.source.issn | 2214-5095 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2214-5095 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Case Studies in Construction Materials |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Case Studies in Construction Materials |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.cscm.2023.e02459 |
| primary_location.id | doi:10.1016/j.cscm.2023.e02459 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764881959 |
| primary_location.source.issn | 2214-5095 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2214-5095 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Case Studies in Construction Materials |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Case Studies in Construction Materials |
| primary_location.landing_page_url | https://doi.org/10.1016/j.cscm.2023.e02459 |
| publication_date | 2023-09-09 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2007120829, https://openalex.org/W2082211947, https://openalex.org/W1973807198, https://openalex.org/W1975222854, https://openalex.org/W2034536791, https://openalex.org/W2060528876, https://openalex.org/W2078628672, https://openalex.org/W2802638718, https://openalex.org/W2739703552, https://openalex.org/W2165082401, https://openalex.org/W2954651804, https://openalex.org/W2976379089, https://openalex.org/W2536139238, https://openalex.org/W2765324991, https://openalex.org/W2073459151, https://openalex.org/W6691251724, https://openalex.org/W2913829163, https://openalex.org/W2945252408, https://openalex.org/W2061549292, https://openalex.org/W2920603930, https://openalex.org/W2790834180, https://openalex.org/W2809685605, https://openalex.org/W2760676003, https://openalex.org/W2028178014, https://openalex.org/W1986768334, https://openalex.org/W2901279671, https://openalex.org/W2796052553, https://openalex.org/W2892361940, https://openalex.org/W6686068577, https://openalex.org/W2932636924, https://openalex.org/W2060662254, https://openalex.org/W2532666961, https://openalex.org/W2920879774, https://openalex.org/W2738463733, https://openalex.org/W2901188054, https://openalex.org/W2087652531, https://openalex.org/W7036587141, https://openalex.org/W6779871788, https://openalex.org/W3200945331, https://openalex.org/W3196351205, https://openalex.org/W2759095387, https://openalex.org/W755172674, https://openalex.org/W2607017530, https://openalex.org/W1966876399, https://openalex.org/W2917877104, https://openalex.org/W2048824339, https://openalex.org/W2883997154, https://openalex.org/W2037831948, https://openalex.org/W2039869195, https://openalex.org/W2765120714, https://openalex.org/W2079092214, https://openalex.org/W2556156268, https://openalex.org/W4380371580, https://openalex.org/W4377019209, https://openalex.org/W4379538285, https://openalex.org/W4362719260, https://openalex.org/W6847768447, https://openalex.org/W4367048660, https://openalex.org/W6851806186, https://openalex.org/W4323075560, https://openalex.org/W6847492702, https://openalex.org/W4283707381, https://openalex.org/W4376127073, https://openalex.org/W6853011878, https://openalex.org/W4324031043, https://openalex.org/W6848981151, https://openalex.org/W4377043388, https://openalex.org/W4316506870, https://openalex.org/W6852388040, https://openalex.org/W2088053778, https://openalex.org/W2006973870, https://openalex.org/W4319295485, https://openalex.org/W4361026982, https://openalex.org/W4313338210, https://openalex.org/W4382044921, https://openalex.org/W1810120829, https://openalex.org/W2407463458, https://openalex.org/W2010773153, https://openalex.org/W2593848727, https://openalex.org/W2794315224, https://openalex.org/W2602084794, https://openalex.org/W2221475138, https://openalex.org/W2905023038, https://openalex.org/W2560189385, https://openalex.org/W2949006411, https://openalex.org/W2075227564, https://openalex.org/W2016046257, https://openalex.org/W2082731327, https://openalex.org/W1997945763, https://openalex.org/W2094749864, https://openalex.org/W2737792571, https://openalex.org/W2503963865, https://openalex.org/W2223491879, https://openalex.org/W2083853248, https://openalex.org/W3004315419, https://openalex.org/W3136814736, https://openalex.org/W3128336786, https://openalex.org/W2093603648, https://openalex.org/W3033888387, https://openalex.org/W2076669121, https://openalex.org/W2515871802, https://openalex.org/W2980539464, https://openalex.org/W2594967417, https://openalex.org/W2970393605, https://openalex.org/W2976353133, https://openalex.org/W3086614971, https://openalex.org/W3045004532, https://openalex.org/W3028852288, https://openalex.org/W2976039593, https://openalex.org/W3107089487, https://openalex.org/W2901949192, https://openalex.org/W2765530733, https://openalex.org/W2583314205, https://openalex.org/W2910884596, https://openalex.org/W2064810792, https://openalex.org/W2094318300, https://openalex.org/W2044240421, https://openalex.org/W2137534705, https://openalex.org/W2461223127, https://openalex.org/W2037888896, https://openalex.org/W2053525656, https://openalex.org/W3110227822, https://openalex.org/W2905581504, https://openalex.org/W2804278739, https://openalex.org/W2059632080, https://openalex.org/W3175272552, https://openalex.org/W6788109783, https://openalex.org/W4200470394, https://openalex.org/W4200071744, https://openalex.org/W2555697849, https://openalex.org/W6683161558, https://openalex.org/W6679909955, https://openalex.org/W6684278770, https://openalex.org/W2095705004, https://openalex.org/W2914110112, https://openalex.org/W2893336090, https://openalex.org/W6853590843, https://openalex.org/W6672428866, https://openalex.org/W2975163794, https://openalex.org/W2011580004, https://openalex.org/W6737947904, https://openalex.org/W3185551827, https://openalex.org/W3035353528, https://openalex.org/W4280538350, https://openalex.org/W2962862931, https://openalex.org/W4297791040, https://openalex.org/W4365512529, https://openalex.org/W4311594426, https://openalex.org/W4313596476, https://openalex.org/W2156876426, https://openalex.org/W4379745224, https://openalex.org/W2559893152, https://openalex.org/W3114296666, https://openalex.org/W2134797427, https://openalex.org/W3038122322, https://openalex.org/W4312221648, https://openalex.org/W4378447181, https://openalex.org/W4379259936 |
| referenced_works_count | 158 |
| abstract_inverted_index.a | 13, 91 |
| abstract_inverted_index.CS | 179 |
| abstract_inverted_index.In | 168 |
| abstract_inverted_index.To | 85 |
| abstract_inverted_index.as | 12, 302, 304 |
| abstract_inverted_index.be | 274 |
| abstract_inverted_index.by | 284 |
| abstract_inverted_index.in | 176, 244, 276 |
| abstract_inverted_index.is | 107, 294 |
| abstract_inverted_index.it | 293 |
| abstract_inverted_index.of | 2, 21, 39, 83, 96, 103, 155, 187, 211, 253, 312 |
| abstract_inverted_index.on | 63 |
| abstract_inverted_index.to | 16, 35, 78, 128, 142, 181, 279, 296, 308 |
| abstract_inverted_index.up | 87 |
| abstract_inverted_index.169 | 101 |
| abstract_inverted_index.397 | 94 |
| abstract_inverted_index.For | 52 |
| abstract_inverted_index.The | 0, 112, 147, 227, 251 |
| abstract_inverted_index.and | 41, 72, 100, 121, 160, 190, 196, 218, 236, 247, 268, 272, 282, 299 |
| abstract_inverted_index.are | 32 |
| abstract_inverted_index.for | 47, 163, 192, 201, 213, 216, 220, 290 |
| abstract_inverted_index.has | 9 |
| abstract_inverted_index.its | 224 |
| abstract_inverted_index.mix | 50, 287 |
| abstract_inverted_index.out | 141 |
| abstract_inverted_index.the | 18, 37, 43, 48, 55, 80, 88, 130, 134, 144, 164, 170, 178, 193, 202, 206, 232, 241, 254, 258, 263, 286, 310 |
| abstract_inverted_index.via | 117 |
| abstract_inverted_index.was | 115, 139 |
| abstract_inverted_index.(CS) | 99 |
| abstract_inverted_index.(FS) | 106 |
| abstract_inverted_index.(ML) | 30 |
| abstract_inverted_index.DNN2 | 148, 207, 259 |
| abstract_inverted_index.GEP2 | 171 |
| abstract_inverted_index.SHAP | 228 |
| abstract_inverted_index.WFSC | 40, 313 |
| abstract_inverted_index.age, | 233 |
| abstract_inverted_index.been | 10 |
| abstract_inverted_index.cost | 283 |
| abstract_inverted_index.deep | 68 |
| abstract_inverted_index.five | 59 |
| abstract_inverted_index.from | 109 |
| abstract_inverted_index.gene | 64 |
| abstract_inverted_index.have | 240 |
| abstract_inverted_index.high | 266 |
| abstract_inverted_index.into | 7 |
| abstract_inverted_index.poor | 174 |
| abstract_inverted_index.sand | 5, 24 |
| abstract_inverted_index.that | 231, 257 |
| abstract_inverted_index.this | 53 |
| abstract_inverted_index.well | 303 |
| abstract_inverted_index.were | 126 |
| abstract_inverted_index.with | 153, 185, 265 |
| abstract_inverted_index.work | 57 |
| abstract_inverted_index.(WFS) | 6 |
| abstract_inverted_index.0.844 | 191 |
| abstract_inverted_index.0.996 | 156, 215 |
| abstract_inverted_index.0.997 | 161 |
| abstract_inverted_index.0.999 | 158, 212, 219 |
| abstract_inverted_index.WFSC. | 84 |
| abstract_inverted_index.based | 62 |
| abstract_inverted_index.build | 86 |
| abstract_inverted_index.error | 270 |
| abstract_inverted_index.input | 45 |
| abstract_inverted_index.labor | 281 |
| abstract_inverted_index.lower | 269 |
| abstract_inverted_index.might | 273 |
| abstract_inverted_index.model | 149, 172, 208, 260 |
| abstract_inverted_index.other | 182 |
| abstract_inverted_index.prime | 242 |
| abstract_inverted_index.ratio | 239 |
| abstract_inverted_index.sets, | 198, 222 |
| abstract_inverted_index.still | 33 |
| abstract_inverted_index.waste | 3, 22 |
| abstract_inverted_index.(DNN), | 71 |
| abstract_inverted_index.(GEP), | 67 |
| abstract_inverted_index.(OGPR) | 77 |
| abstract_inverted_index.(SHAP) | 138 |
| abstract_inverted_index.0.851, | 188 |
| abstract_inverted_index.0.901, | 189 |
| abstract_inverted_index.coarse | 237 |
| abstract_inverted_index.fields | 278 |
| abstract_inverted_index.future | 291 |
| abstract_inverted_index.hybrid | 300 |
| abstract_inverted_index.models | 255 |
| abstract_inverted_index.neural | 69 |
| abstract_inverted_index.output | 264 |
| abstract_inverted_index.ratio, | 235 |
| abstract_inverted_index.reduce | 280 |
| abstract_inverted_index.robust | 225 |
| abstract_inverted_index.showed | 173 |
| abstract_inverted_index.values | 95, 102, 271 |
| abstract_inverted_index.(WFSC). | 26 |
| abstract_inverted_index.Shapley | 135 |
| abstract_inverted_index.carried | 140 |
| abstract_inverted_index.design. | 51 |
| abstract_inverted_index.foundry | 4, 23 |
| abstract_inverted_index.improve | 17 |
| abstract_inverted_index.machine | 28 |
| abstract_inverted_index.metrics | 120 |
| abstract_inverted_index.model's | 145 |
| abstract_inverted_index.models' | 113 |
| abstract_inverted_index.models, | 90, 184 |
| abstract_inverted_index.models. | 132 |
| abstract_inverted_index.network | 70 |
| abstract_inverted_index.predict | 79 |
| abstract_inverted_index.present | 56 |
| abstract_inverted_index.process | 75 |
| abstract_inverted_index.utilize | 297 |
| abstract_inverted_index.various | 118 |
| abstract_inverted_index.Finally, | 289 |
| abstract_inverted_index.Gaussian | 74 |
| abstract_inverted_index.However, | 27 |
| abstract_inverted_index.ML-based | 60 |
| abstract_inverted_index.R-values | 154, 186, 210 |
| abstract_inverted_index.accuracy | 175, 267 |
| abstract_inverted_index.additive | 136 |
| abstract_inverted_index.analysis | 229 |
| abstract_inverted_index.approach | 15 |
| abstract_inverted_index.compared | 180 |
| abstract_inverted_index.concrete | 8, 25 |
| abstract_inverted_index.criteria | 125 |
| abstract_inverted_index.database | 92 |
| abstract_inverted_index.dominant | 44 |
| abstract_inverted_index.employed | 127 |
| abstract_inverted_index.ensemble | 298 |
| abstract_inverted_index.evaluate | 42 |
| abstract_inverted_index.external | 123 |
| abstract_inverted_index.features | 46 |
| abstract_inverted_index.flexural | 104, 203, 246 |
| abstract_inverted_index.forecast | 36, 309 |
| abstract_inverted_index.learning | 29 |
| abstract_inverted_index.post-hoc | 305 |
| abstract_inverted_index.provided | 209, 256 |
| abstract_inverted_index.purpose, | 54 |
| abstract_inverted_index.revealed | 230 |
| abstract_inverted_index.selected | 58 |
| abstract_inverted_index.strength | 19, 98, 105, 166, 204 |
| abstract_inverted_index.studies, | 292 |
| abstract_inverted_index.suitable | 49 |
| abstract_inverted_index.superior | 151 |
| abstract_inverted_index.testing, | 195, 217 |
| abstract_inverted_index.utilized | 275 |
| abstract_inverted_index.validate | 129 |
| abstract_inverted_index.collected | 108 |
| abstract_inverted_index.contrast, | 169 |
| abstract_inverted_index.developed | 131, 183 |
| abstract_inverted_index.estimated | 262 |
| abstract_inverted_index.evaluated | 116 |
| abstract_inverted_index.exhibited | 150 |
| abstract_inverted_index.influence | 243 |
| abstract_inverted_index.interpret | 143 |
| abstract_inverted_index.necessary | 34 |
| abstract_inverted_index.practical | 277 |
| abstract_inverted_index.published | 110 |
| abstract_inverted_index.regressor | 76 |
| abstract_inverted_index.strength, | 249 |
| abstract_inverted_index.training, | 194, 214 |
| abstract_inverted_index.(testing), | 159 |
| abstract_inverted_index.Similarly, | 200 |
| abstract_inverted_index.accurately | 261 |
| abstract_inverted_index.comparison | 252 |
| abstract_inverted_index.containing | 93 |
| abstract_inverted_index.estimating | 177 |
| abstract_inverted_index.expression | 65 |
| abstract_inverted_index.indicating | 223 |
| abstract_inverted_index.mechanical | 81 |
| abstract_inverted_index.optimizing | 285 |
| abstract_inverted_index.predictive | 89 |
| abstract_inverted_index.properties | 20 |
| abstract_inverted_index.recognized | 11 |
| abstract_inverted_index.techniques | 31, 61 |
| abstract_inverted_index.validation | 124, 197, 221 |
| abstract_inverted_index.(training), | 157 |
| abstract_inverted_index.accurately. | 314 |
| abstract_inverted_index.algorithms, | 301 |
| abstract_inverted_index.compressive | 97, 165, 248 |
| abstract_inverted_index.determining | 245 |
| abstract_inverted_index.estimation, | 205 |
| abstract_inverted_index.estimation. | 167 |
| abstract_inverted_index.explanation | 137 |
| abstract_inverted_index.explanatory | 306 |
| abstract_inverted_index.literature. | 111 |
| abstract_inverted_index.optimizable | 73 |
| abstract_inverted_index.performance | 114 |
| abstract_inverted_index.prediction. | 146 |
| abstract_inverted_index.programming | 66 |
| abstract_inverted_index.recommended | 295 |
| abstract_inverted_index.statistical | 119 |
| abstract_inverted_index.sustainable | 14 |
| abstract_inverted_index.techniques, | 307 |
| abstract_inverted_index.(validation) | 162 |
| abstract_inverted_index.Furthermore, | 133 |
| abstract_inverted_index.performance, | 152 |
| abstract_inverted_index.performance. | 226 |
| abstract_inverted_index.water-cement | 234 |
| abstract_inverted_index.additionally, | 122 |
| abstract_inverted_index.combinations. | 288 |
| abstract_inverted_index.incorporation | 1 |
| abstract_inverted_index.respectively. | 199, 250 |
| abstract_inverted_index.characteristics | 38, 82, 311 |
| abstract_inverted_index.aggregate-to-cement | 238 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5089226299, https://openalex.org/A5066252050, https://openalex.org/A5100653748, https://openalex.org/A5082053893, https://openalex.org/A5021030516, https://openalex.org/A5067496461, https://openalex.org/A5026368254 |
| countries_distinct_count | 6 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I119004910, https://openalex.org/I142608572, https://openalex.org/I145487455, https://openalex.org/I16076960, https://openalex.org/I186217134, https://openalex.org/I29770179, https://openalex.org/I4210153389, https://openalex.org/I90610274 |
| citation_normalized_percentile.value | 0.97897234 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |