Forecasting Vertical Profiles of Ocean Currents from Surface Characteristics: A Multivariate Multi-Head Convolutional Neural Network–Long Short-Term Memory Approach Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/jmse11101964
While study of ocean dynamics usually involves modeling deep ocean variables, monitoring and accurate forecasting of nearshore environments is also critical. However, sensor observations often contain artifacts like long stretches of missing data and noise, typically after an extreme event occurrence or some accidental damage to the sensors. Such data artifacts, if not handled diligently prior to modeling, can significantly impact the reliability of any further predictive analysis. Therefore, we present a framework that integrates data reconstruction of key sea state variables and multi-step-ahead forecasting of current speed from the reconstructed time series for 19 depth levels simultaneously. Using multivariate chained regressions, the reconstruction algorithm rigorously tests from an ensemble of tree-based models (fed only with surface characteristics) to impute gaps in the vertical profiles of the sea state variables down to 20 m deep. Subsequently, a deep encoder–decoder model, comprising multi-head convolutional networks, extracts high-level features from each depth level’s multivariate (reconstructed) input and feeds them to a deep long short-term memory network for 24 h ahead forecasts of current speed profiles. In this work, we utilized Viking buoy data, and demonstrated that with limited training data, we could explain an overall 80% variation in the current speed profiles across the forecast period and the depth levels.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/jmse11101964
- https://www.mdpi.com/2077-1312/11/10/1964/pdf?version=1697023057
- OA Status
- gold
- Cited By
- 4
- References
- 59
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387528601
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387528601Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/jmse11101964Digital Object Identifier
- Title
-
Forecasting Vertical Profiles of Ocean Currents from Surface Characteristics: A Multivariate Multi-Head Convolutional Neural Network–Long Short-Term Memory ApproachWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-11Full publication date if available
- Authors
-
Soumyashree Kar, Jason McKenna, Glenn Anglada, Vishwamithra Sunkara, Robert Coniglione, Steve Stanic, Landry BernardList of authors in order
- Landing page
-
https://doi.org/10.3390/jmse11101964Publisher landing page
- PDF URL
-
https://www.mdpi.com/2077-1312/11/10/1964/pdf?version=1697023057Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2077-1312/11/10/1964/pdf?version=1697023057Direct OA link when available
- Concepts
-
Multivariate statistics, Buoy, Computer science, Convolutional neural network, Missing data, Hindcast, Deep learning, Artificial intelligence, Machine learning, Geology, OceanographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
59Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387528601 |
|---|---|
| doi | https://doi.org/10.3390/jmse11101964 |
| ids.doi | https://doi.org/10.3390/jmse11101964 |
| ids.openalex | https://openalex.org/W4387528601 |
| fwci | 1.17597564 |
| type | article |
| title | Forecasting Vertical Profiles of Ocean Currents from Surface Characteristics: A Multivariate Multi-Head Convolutional Neural Network–Long Short-Term Memory Approach |
| biblio.issue | 10 |
| biblio.volume | 11 |
| biblio.last_page | 1964 |
| biblio.first_page | 1964 |
| topics[0].id | https://openalex.org/T10255 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9977999925613403 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1910 |
| topics[0].subfield.display_name | Oceanography |
| topics[0].display_name | Oceanographic and Atmospheric Processes |
| topics[1].id | https://openalex.org/T10230 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9842000007629395 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2306 |
| topics[1].subfield.display_name | Global and Planetary Change |
| topics[1].display_name | Marine and fisheries research |
| topics[2].id | https://openalex.org/T11698 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.9768000245094299 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1910 |
| topics[2].subfield.display_name | Oceanography |
| topics[2].display_name | Underwater Acoustics Research |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C161584116 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6865658760070801 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1952580 |
| concepts[0].display_name | Multivariate statistics |
| concepts[1].id | https://openalex.org/C2779847632 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6857686042785645 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q30026 |
| concepts[1].display_name | Buoy |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6229636669158936 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C81363708 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6066652536392212 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[3].display_name | Convolutional neural network |
| concepts[4].id | https://openalex.org/C9357733 |
| concepts[4].level | 2 |
| concepts[4].score | 0.46861109137535095 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q6878417 |
| concepts[4].display_name | Missing data |
| concepts[5].id | https://openalex.org/C83002819 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4227285087108612 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q798528 |
| concepts[5].display_name | Hindcast |
| concepts[6].id | https://openalex.org/C108583219 |
| concepts[6].level | 2 |
| concepts[6].score | 0.41839587688446045 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[6].display_name | Deep learning |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.40073496103286743 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.24879950284957886 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C127313418 |
| concepts[9].level | 0 |
| concepts[9].score | 0.16604742407798767 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[9].display_name | Geology |
| concepts[10].id | https://openalex.org/C111368507 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q43518 |
| concepts[10].display_name | Oceanography |
| keywords[0].id | https://openalex.org/keywords/multivariate-statistics |
| keywords[0].score | 0.6865658760070801 |
| keywords[0].display_name | Multivariate statistics |
| keywords[1].id | https://openalex.org/keywords/buoy |
| keywords[1].score | 0.6857686042785645 |
| keywords[1].display_name | Buoy |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6229636669158936 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[3].score | 0.6066652536392212 |
| keywords[3].display_name | Convolutional neural network |
| keywords[4].id | https://openalex.org/keywords/missing-data |
| keywords[4].score | 0.46861109137535095 |
| keywords[4].display_name | Missing data |
| keywords[5].id | https://openalex.org/keywords/hindcast |
| keywords[5].score | 0.4227285087108612 |
| keywords[5].display_name | Hindcast |
| keywords[6].id | https://openalex.org/keywords/deep-learning |
| keywords[6].score | 0.41839587688446045 |
| keywords[6].display_name | Deep learning |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.40073496103286743 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.24879950284957886 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/geology |
| keywords[9].score | 0.16604742407798767 |
| keywords[9].display_name | Geology |
| language | en |
| locations[0].id | doi:10.3390/jmse11101964 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2736865057 |
| locations[0].source.issn | 2077-1312 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2077-1312 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of Marine Science and Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2077-1312/11/10/1964/pdf?version=1697023057 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Marine Science and Engineering |
| locations[0].landing_page_url | https://doi.org/10.3390/jmse11101964 |
| locations[1].id | pmh:oai:doaj.org/article:eb250249fc1844cb878be99c460de85d |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Journal of Marine Science and Engineering, Vol 11, Iss 10, p 1964 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/eb250249fc1844cb878be99c460de85d |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5077949635 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2158-2540 |
| authorships[0].author.display_name | Soumyashree Kar |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I44854399 |
| authorships[0].affiliations[0].raw_affiliation_string | Roger F. Wicker Center for Ocean Enterprise, The University of Southern Mississippi, Gulfport, MS 39501, USA |
| authorships[0].institutions[0].id | https://openalex.org/I44854399 |
| authorships[0].institutions[0].ror | https://ror.org/0270vfa57 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210141039, https://openalex.org/I44854399 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Southern Mississippi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Soumyashree Kar |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Roger F. Wicker Center for Ocean Enterprise, The University of Southern Mississippi, Gulfport, MS 39501, USA |
| authorships[1].author.id | https://openalex.org/A5064064443 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4983-7640 |
| authorships[1].author.display_name | Jason McKenna |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I44854399 |
| authorships[1].affiliations[0].raw_affiliation_string | Roger F. Wicker Center for Ocean Enterprise, The University of Southern Mississippi, Gulfport, MS 39501, USA |
| authorships[1].institutions[0].id | https://openalex.org/I44854399 |
| authorships[1].institutions[0].ror | https://ror.org/0270vfa57 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210141039, https://openalex.org/I44854399 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Southern Mississippi |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jason R. McKenna |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Roger F. Wicker Center for Ocean Enterprise, The University of Southern Mississippi, Gulfport, MS 39501, USA |
| authorships[2].author.id | https://openalex.org/A5093042458 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Glenn Anglada |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I44854399 |
| authorships[2].affiliations[0].raw_affiliation_string | Roger F. Wicker Center for Ocean Enterprise, The University of Southern Mississippi, Gulfport, MS 39501, USA |
| authorships[2].institutions[0].id | https://openalex.org/I44854399 |
| authorships[2].institutions[0].ror | https://ror.org/0270vfa57 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210141039, https://openalex.org/I44854399 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Southern Mississippi |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Glenn Anglada |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Roger F. Wicker Center for Ocean Enterprise, The University of Southern Mississippi, Gulfport, MS 39501, USA |
| authorships[3].author.id | https://openalex.org/A5064654722 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9847-8579 |
| authorships[3].author.display_name | Vishwamithra Sunkara |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I44854399 |
| authorships[3].affiliations[0].raw_affiliation_string | Roger F. Wicker Center for Ocean Enterprise, The University of Southern Mississippi, Gulfport, MS 39501, USA |
| authorships[3].institutions[0].id | https://openalex.org/I44854399 |
| authorships[3].institutions[0].ror | https://ror.org/0270vfa57 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210141039, https://openalex.org/I44854399 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Southern Mississippi |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Vishwamithra Sunkara |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Roger F. Wicker Center for Ocean Enterprise, The University of Southern Mississippi, Gulfport, MS 39501, USA |
| authorships[4].author.id | https://openalex.org/A5079247994 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Robert Coniglione |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I44854399 |
| authorships[4].affiliations[0].raw_affiliation_string | Roger F. Wicker Center for Ocean Enterprise, The University of Southern Mississippi, Gulfport, MS 39501, USA |
| authorships[4].institutions[0].id | https://openalex.org/I44854399 |
| authorships[4].institutions[0].ror | https://ror.org/0270vfa57 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210141039, https://openalex.org/I44854399 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Southern Mississippi |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Robert Coniglione |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Roger F. Wicker Center for Ocean Enterprise, The University of Southern Mississippi, Gulfport, MS 39501, USA |
| authorships[5].author.id | https://openalex.org/A5108353668 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Steve Stanic |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I44854399 |
| authorships[5].affiliations[0].raw_affiliation_string | Roger F. Wicker Center for Ocean Enterprise, The University of Southern Mississippi, Gulfport, MS 39501, USA |
| authorships[5].institutions[0].id | https://openalex.org/I44854399 |
| authorships[5].institutions[0].ror | https://ror.org/0270vfa57 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210141039, https://openalex.org/I44854399 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | University of Southern Mississippi |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Steve Stanic |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Roger F. Wicker Center for Ocean Enterprise, The University of Southern Mississippi, Gulfport, MS 39501, USA |
| authorships[6].author.id | https://openalex.org/A5111804133 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Landry Bernard |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I44854399 |
| authorships[6].affiliations[0].raw_affiliation_string | Roger F. Wicker Center for Ocean Enterprise, The University of Southern Mississippi, Gulfport, MS 39501, USA |
| authorships[6].institutions[0].id | https://openalex.org/I44854399 |
| authorships[6].institutions[0].ror | https://ror.org/0270vfa57 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210141039, https://openalex.org/I44854399 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | University of Southern Mississippi |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Landry Bernard |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Roger F. Wicker Center for Ocean Enterprise, The University of Southern Mississippi, Gulfport, MS 39501, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2077-1312/11/10/1964/pdf?version=1697023057 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Forecasting Vertical Profiles of Ocean Currents from Surface Characteristics: A Multivariate Multi-Head Convolutional Neural Network–Long Short-Term Memory Approach |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10255 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9977999925613403 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1910 |
| primary_topic.subfield.display_name | Oceanography |
| primary_topic.display_name | Oceanographic and Atmospheric Processes |
| related_works | https://openalex.org/W2895732286, https://openalex.org/W2332912399, https://openalex.org/W2537396124, https://openalex.org/W335333222, https://openalex.org/W4236597287, https://openalex.org/W2636138124, https://openalex.org/W3111891220, https://openalex.org/W4220967543, https://openalex.org/W2026418801, https://openalex.org/W4242324119 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/jmse11101964 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2736865057 |
| best_oa_location.source.issn | 2077-1312 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2077-1312 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of Marine Science and Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2077-1312/11/10/1964/pdf?version=1697023057 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Marine Science and Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.3390/jmse11101964 |
| primary_location.id | doi:10.3390/jmse11101964 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2736865057 |
| primary_location.source.issn | 2077-1312 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2077-1312 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of Marine Science and Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2077-1312/11/10/1964/pdf?version=1697023057 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Marine Science and Engineering |
| primary_location.landing_page_url | https://doi.org/10.3390/jmse11101964 |
| publication_date | 2023-10-11 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4225371750, https://openalex.org/W3122200694, https://openalex.org/W2953424289, https://openalex.org/W4226247228, https://openalex.org/W4400451198, https://openalex.org/W4324145231, https://openalex.org/W2908134089, https://openalex.org/W2533316859, https://openalex.org/W2140485795, https://openalex.org/W2802258508, https://openalex.org/W3178375665, https://openalex.org/W4295828513, https://openalex.org/W2963484576, https://openalex.org/W2615896930, https://openalex.org/W2915637003, https://openalex.org/W2990304358, https://openalex.org/W4256448018, https://openalex.org/W2132456459, https://openalex.org/W3136355580, https://openalex.org/W2955427403, https://openalex.org/W4309277421, https://openalex.org/W2991014406, https://openalex.org/W3158655122, https://openalex.org/W3087160123, https://openalex.org/W2050949921, https://openalex.org/W6840926507, https://openalex.org/W3217142493, https://openalex.org/W1987967699, https://openalex.org/W2542230798, https://openalex.org/W3099743705, https://openalex.org/W2766098680, https://openalex.org/W2754385338, https://openalex.org/W2792315929, https://openalex.org/W3210049843, https://openalex.org/W4361208332, https://openalex.org/W4292380534, https://openalex.org/W2295598076, https://openalex.org/W4210731331, https://openalex.org/W2752813595, https://openalex.org/W4290647841, https://openalex.org/W4220954082, https://openalex.org/W3140854437, https://openalex.org/W3166743809, https://openalex.org/W3000499162, https://openalex.org/W3134751135, https://openalex.org/W2964336507, https://openalex.org/W3152922106, https://openalex.org/W6870154623, https://openalex.org/W2152418738, https://openalex.org/W4304845512, https://openalex.org/W2950072909, https://openalex.org/W2936236242, https://openalex.org/W3208196388, https://openalex.org/W2015139369, https://openalex.org/W3191914003, https://openalex.org/W3148366207, https://openalex.org/W4292348150, https://openalex.org/W4385342469, https://openalex.org/W4290851525 |
| referenced_works_count | 59 |
| abstract_inverted_index.a | 71, 136, 158 |
| abstract_inverted_index.h | 166 |
| abstract_inverted_index.m | 133 |
| abstract_inverted_index.19 | 94 |
| abstract_inverted_index.20 | 132 |
| abstract_inverted_index.24 | 165 |
| abstract_inverted_index.In | 173 |
| abstract_inverted_index.an | 37, 108, 191 |
| abstract_inverted_index.if | 51 |
| abstract_inverted_index.in | 121, 195 |
| abstract_inverted_index.is | 18 |
| abstract_inverted_index.of | 2, 15, 30, 63, 77, 85, 110, 125, 169 |
| abstract_inverted_index.or | 41 |
| abstract_inverted_index.to | 45, 56, 118, 131, 157 |
| abstract_inverted_index.we | 69, 176, 188 |
| abstract_inverted_index.80% | 193 |
| abstract_inverted_index.and | 12, 33, 82, 154, 181, 204 |
| abstract_inverted_index.any | 64 |
| abstract_inverted_index.can | 58 |
| abstract_inverted_index.for | 93, 164 |
| abstract_inverted_index.key | 78 |
| abstract_inverted_index.not | 52 |
| abstract_inverted_index.sea | 79, 127 |
| abstract_inverted_index.the | 46, 61, 89, 102, 122, 126, 196, 201, 205 |
| abstract_inverted_index.(fed | 113 |
| abstract_inverted_index.Such | 48 |
| abstract_inverted_index.also | 19 |
| abstract_inverted_index.buoy | 179 |
| abstract_inverted_index.data | 32, 49, 75 |
| abstract_inverted_index.deep | 8, 137, 159 |
| abstract_inverted_index.down | 130 |
| abstract_inverted_index.each | 148 |
| abstract_inverted_index.from | 88, 107, 147 |
| abstract_inverted_index.gaps | 120 |
| abstract_inverted_index.like | 27 |
| abstract_inverted_index.long | 28, 160 |
| abstract_inverted_index.only | 114 |
| abstract_inverted_index.some | 42 |
| abstract_inverted_index.that | 73, 183 |
| abstract_inverted_index.them | 156 |
| abstract_inverted_index.this | 174 |
| abstract_inverted_index.time | 91 |
| abstract_inverted_index.with | 115, 184 |
| abstract_inverted_index.Using | 98 |
| abstract_inverted_index.While | 0 |
| abstract_inverted_index.after | 36 |
| abstract_inverted_index.ahead | 167 |
| abstract_inverted_index.could | 189 |
| abstract_inverted_index.data, | 180, 187 |
| abstract_inverted_index.deep. | 134 |
| abstract_inverted_index.depth | 95, 149, 206 |
| abstract_inverted_index.event | 39 |
| abstract_inverted_index.feeds | 155 |
| abstract_inverted_index.input | 153 |
| abstract_inverted_index.ocean | 3, 9 |
| abstract_inverted_index.often | 24 |
| abstract_inverted_index.prior | 55 |
| abstract_inverted_index.speed | 87, 171, 198 |
| abstract_inverted_index.state | 80, 128 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.tests | 106 |
| abstract_inverted_index.work, | 175 |
| abstract_inverted_index.Viking | 178 |
| abstract_inverted_index.across | 200 |
| abstract_inverted_index.damage | 44 |
| abstract_inverted_index.impact | 60 |
| abstract_inverted_index.impute | 119 |
| abstract_inverted_index.levels | 96 |
| abstract_inverted_index.memory | 162 |
| abstract_inverted_index.model, | 139 |
| abstract_inverted_index.models | 112 |
| abstract_inverted_index.noise, | 34 |
| abstract_inverted_index.period | 203 |
| abstract_inverted_index.sensor | 22 |
| abstract_inverted_index.series | 92 |
| abstract_inverted_index.chained | 100 |
| abstract_inverted_index.contain | 25 |
| abstract_inverted_index.current | 86, 170, 197 |
| abstract_inverted_index.explain | 190 |
| abstract_inverted_index.extreme | 38 |
| abstract_inverted_index.further | 65 |
| abstract_inverted_index.handled | 53 |
| abstract_inverted_index.levels. | 207 |
| abstract_inverted_index.limited | 185 |
| abstract_inverted_index.missing | 31 |
| abstract_inverted_index.network | 163 |
| abstract_inverted_index.overall | 192 |
| abstract_inverted_index.present | 70 |
| abstract_inverted_index.surface | 116 |
| abstract_inverted_index.usually | 5 |
| abstract_inverted_index.However, | 21 |
| abstract_inverted_index.accurate | 13 |
| abstract_inverted_index.dynamics | 4 |
| abstract_inverted_index.ensemble | 109 |
| abstract_inverted_index.extracts | 144 |
| abstract_inverted_index.features | 146 |
| abstract_inverted_index.forecast | 202 |
| abstract_inverted_index.involves | 6 |
| abstract_inverted_index.modeling | 7 |
| abstract_inverted_index.profiles | 124, 199 |
| abstract_inverted_index.sensors. | 47 |
| abstract_inverted_index.training | 186 |
| abstract_inverted_index.utilized | 177 |
| abstract_inverted_index.vertical | 123 |
| abstract_inverted_index.algorithm | 104 |
| abstract_inverted_index.analysis. | 67 |
| abstract_inverted_index.artifacts | 26 |
| abstract_inverted_index.critical. | 20 |
| abstract_inverted_index.forecasts | 168 |
| abstract_inverted_index.framework | 72 |
| abstract_inverted_index.level’s | 150 |
| abstract_inverted_index.modeling, | 57 |
| abstract_inverted_index.nearshore | 16 |
| abstract_inverted_index.networks, | 143 |
| abstract_inverted_index.profiles. | 172 |
| abstract_inverted_index.stretches | 29 |
| abstract_inverted_index.typically | 35 |
| abstract_inverted_index.variables | 81, 129 |
| abstract_inverted_index.variation | 194 |
| abstract_inverted_index.Therefore, | 68 |
| abstract_inverted_index.accidental | 43 |
| abstract_inverted_index.artifacts, | 50 |
| abstract_inverted_index.comprising | 140 |
| abstract_inverted_index.diligently | 54 |
| abstract_inverted_index.high-level | 145 |
| abstract_inverted_index.integrates | 74 |
| abstract_inverted_index.monitoring | 11 |
| abstract_inverted_index.multi-head | 141 |
| abstract_inverted_index.occurrence | 40 |
| abstract_inverted_index.predictive | 66 |
| abstract_inverted_index.rigorously | 105 |
| abstract_inverted_index.short-term | 161 |
| abstract_inverted_index.tree-based | 111 |
| abstract_inverted_index.variables, | 10 |
| abstract_inverted_index.forecasting | 14, 84 |
| abstract_inverted_index.reliability | 62 |
| abstract_inverted_index.demonstrated | 182 |
| abstract_inverted_index.environments | 17 |
| abstract_inverted_index.multivariate | 99, 151 |
| abstract_inverted_index.observations | 23 |
| abstract_inverted_index.regressions, | 101 |
| abstract_inverted_index.Subsequently, | 135 |
| abstract_inverted_index.convolutional | 142 |
| abstract_inverted_index.reconstructed | 90 |
| abstract_inverted_index.significantly | 59 |
| abstract_inverted_index.reconstruction | 76, 103 |
| abstract_inverted_index.(reconstructed) | 152 |
| abstract_inverted_index.simultaneously. | 97 |
| abstract_inverted_index.characteristics) | 117 |
| abstract_inverted_index.multi-step-ahead | 83 |
| abstract_inverted_index.encoder–decoder | 138 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5077949635 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I44854399 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/14 |
| sustainable_development_goals[0].score | 0.8700000047683716 |
| sustainable_development_goals[0].display_name | Life below water |
| citation_normalized_percentile.value | 0.79800662 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |