Forecasting Volatility of Australian Stock Market Applying WTC‐DCA‐Informer Framework Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1002/for.3264
This article proposed a novel hybrid framework, the WTC‐DCA‐Informer, for forecasting volatility in the Australian stock market. The findings indicated that (1) through a comprehensive comparison with various machine learning and deep learning models, the proposed WTC‐DCA‐Informer framework significantly outperformed traditional methods in terms of predictive performance. (2) Across different training set proportions, the WTC‐DCA‐Informer model demonstrated exceptional forecasting capabilities, achieving a coefficient of determination ( R 2 ) as high as 0.9216 and a mean absolute percentage error (MAPE) as low as 13.6947%. (3) The model exhibited strong adaptability and robustness in responding to significant market fluctuations and structural changes before and after the outbreak of COVID‐19. This study offers a new perspective and tool for forecasting financial market volatility, with substantial theoretical and practical implications for enhancing the efficiency and stability of financial markets.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/for.3264
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/for.3264
- OA Status
- bronze
- Cited By
- 6
- References
- 29
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408967428
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408967428Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/for.3264Digital Object Identifier
- Title
-
Forecasting Volatility of Australian Stock Market Applying WTC‐DCA‐Informer FrameworkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-26Full publication date if available
- Authors
-
Hongjun Zeng, Ran Wu, Mohammad Zoynul Abedin, Abdullahi D. AhmedList of authors in order
- Landing page
-
https://doi.org/10.1002/for.3264Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/for.3264Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/for.3264Direct OA link when available
- Concepts
-
Volatility (finance), Econometrics, Economics, Stock market, Financial economics, Stock market volatility, Geography, Context (archaeology), ArchaeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6Per-year citation counts (last 5 years)
- References (count)
-
29Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408967428 |
|---|---|
| doi | https://doi.org/10.1002/for.3264 |
| ids.doi | https://doi.org/10.1002/for.3264 |
| ids.openalex | https://openalex.org/W4408967428 |
| fwci | 33.04092664 |
| type | article |
| title | Forecasting Volatility of Australian Stock Market Applying WTC‐DCA‐Informer Framework |
| biblio.issue | 6 |
| biblio.volume | 44 |
| biblio.last_page | 1866 |
| biblio.first_page | 1851 |
| topics[0].id | https://openalex.org/T11326 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9975000023841858 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Stock Market Forecasting Methods |
| topics[1].id | https://openalex.org/T11918 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.9944999814033508 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1803 |
| topics[1].subfield.display_name | Management Science and Operations Research |
| topics[1].display_name | Forecasting Techniques and Applications |
| topics[2].id | https://openalex.org/T11059 |
| topics[2].field.id | https://openalex.org/fields/20 |
| topics[2].field.display_name | Economics, Econometrics and Finance |
| topics[2].score | 0.9909999966621399 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2002 |
| topics[2].subfield.display_name | Economics and Econometrics |
| topics[2].display_name | Market Dynamics and Volatility |
| is_xpac | False |
| apc_list.value | 3090 |
| apc_list.currency | USD |
| apc_list.value_usd | 3090 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C91602232 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5912173986434937 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q756115 |
| concepts[0].display_name | Volatility (finance) |
| concepts[1].id | https://openalex.org/C149782125 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5613754391670227 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[1].display_name | Econometrics |
| concepts[2].id | https://openalex.org/C162324750 |
| concepts[2].level | 0 |
| concepts[2].score | 0.54093998670578 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[2].display_name | Economics |
| concepts[3].id | https://openalex.org/C2780299701 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5389227867126465 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q475000 |
| concepts[3].display_name | Stock market |
| concepts[4].id | https://openalex.org/C106159729 |
| concepts[4].level | 1 |
| concepts[4].score | 0.528126060962677 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2294553 |
| concepts[4].display_name | Financial economics |
| concepts[5].id | https://openalex.org/C2994019854 |
| concepts[5].level | 4 |
| concepts[5].score | 0.51006680727005 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q756115 |
| concepts[5].display_name | Stock market volatility |
| concepts[6].id | https://openalex.org/C205649164 |
| concepts[6].level | 0 |
| concepts[6].score | 0.08905673027038574 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[6].display_name | Geography |
| concepts[7].id | https://openalex.org/C2779343474 |
| concepts[7].level | 2 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[7].display_name | Context (archaeology) |
| concepts[8].id | https://openalex.org/C166957645 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[8].display_name | Archaeology |
| keywords[0].id | https://openalex.org/keywords/volatility |
| keywords[0].score | 0.5912173986434937 |
| keywords[0].display_name | Volatility (finance) |
| keywords[1].id | https://openalex.org/keywords/econometrics |
| keywords[1].score | 0.5613754391670227 |
| keywords[1].display_name | Econometrics |
| keywords[2].id | https://openalex.org/keywords/economics |
| keywords[2].score | 0.54093998670578 |
| keywords[2].display_name | Economics |
| keywords[3].id | https://openalex.org/keywords/stock-market |
| keywords[3].score | 0.5389227867126465 |
| keywords[3].display_name | Stock market |
| keywords[4].id | https://openalex.org/keywords/financial-economics |
| keywords[4].score | 0.528126060962677 |
| keywords[4].display_name | Financial economics |
| keywords[5].id | https://openalex.org/keywords/stock-market-volatility |
| keywords[5].score | 0.51006680727005 |
| keywords[5].display_name | Stock market volatility |
| keywords[6].id | https://openalex.org/keywords/geography |
| keywords[6].score | 0.08905673027038574 |
| keywords[6].display_name | Geography |
| language | en |
| locations[0].id | doi:10.1002/for.3264 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S122161766 |
| locations[0].source.issn | 0277-6693, 1099-131X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0277-6693 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Forecasting |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].license | |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/for.3264 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Forecasting |
| locations[0].landing_page_url | https://doi.org/10.1002/for.3264 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5050073383 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5437-2710 |
| authorships[0].author.display_name | Hongjun Zeng |
| authorships[0].countries | AU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I82951845 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Financial Planning and Tax, School of Accounting, Information Systems and Supply Chain RMIT University Melbourne Australia |
| authorships[0].institutions[0].id | https://openalex.org/I82951845 |
| authorships[0].institutions[0].ror | https://ror.org/04ttjf776 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I82951845 |
| authorships[0].institutions[0].country_code | AU |
| authorships[0].institutions[0].display_name | RMIT University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hongjun Zeng |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Financial Planning and Tax, School of Accounting, Information Systems and Supply Chain RMIT University Melbourne Australia |
| authorships[1].author.id | https://openalex.org/A5034561307 |
| authorships[1].author.orcid | https://orcid.org/0009-0008-1436-5736 |
| authorships[1].author.display_name | Ran Wu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I76569877 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Economics and Management Southeast University Nanjing China |
| authorships[1].institutions[0].id | https://openalex.org/I76569877 |
| authorships[1].institutions[0].ror | https://ror.org/04ct4d772 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I76569877 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Southeast University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ran Wu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Economics and Management Southeast University Nanjing China |
| authorships[2].author.id | https://openalex.org/A5047331779 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4688-0619 |
| authorships[2].author.display_name | Mohammad Zoynul Abedin |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I39586589 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Accounting and Finance, School of Management Swansea University Swansea Wales UK |
| authorships[2].institutions[0].id | https://openalex.org/I39586589 |
| authorships[2].institutions[0].ror | https://ror.org/053fq8t95 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I39586589 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | Swansea University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mohammad Zoynul Abedin |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Accounting and Finance, School of Management Swansea University Swansea Wales UK |
| authorships[3].author.id | https://openalex.org/A5056060431 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4472-0205 |
| authorships[3].author.display_name | Abdullahi D. Ahmed |
| authorships[3].countries | AU |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I82951845 |
| authorships[3].affiliations[0].raw_affiliation_string | School of AISSC RMIT University Melbourne Australia |
| authorships[3].institutions[0].id | https://openalex.org/I82951845 |
| authorships[3].institutions[0].ror | https://ror.org/04ttjf776 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I82951845 |
| authorships[3].institutions[0].country_code | AU |
| authorships[3].institutions[0].display_name | RMIT University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Abdullahi D. Ahmed |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of AISSC RMIT University Melbourne Australia |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/for.3264 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Forecasting Volatility of Australian Stock Market Applying WTC‐DCA‐Informer Framework |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11326 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9975000023841858 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Stock Market Forecasting Methods |
| related_works | https://openalex.org/W2753588648, https://openalex.org/W2392378997, https://openalex.org/W4210634277, https://openalex.org/W4200000277, https://openalex.org/W1592282278, https://openalex.org/W3192372044, https://openalex.org/W2792823531, https://openalex.org/W3028340796, https://openalex.org/W3027056383, https://openalex.org/W2469713289 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1002/for.3264 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S122161766 |
| best_oa_location.source.issn | 0277-6693, 1099-131X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0277-6693 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Forecasting |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/for.3264 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Forecasting |
| best_oa_location.landing_page_url | https://doi.org/10.1002/for.3264 |
| primary_location.id | doi:10.1002/for.3264 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S122161766 |
| primary_location.source.issn | 0277-6693, 1099-131X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0277-6693 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Forecasting |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.license | |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/for.3264 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Forecasting |
| primary_location.landing_page_url | https://doi.org/10.1002/for.3264 |
| publication_date | 2025-03-26 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2008278511, https://openalex.org/W2106970080, https://openalex.org/W2100808453, https://openalex.org/W1999996900, https://openalex.org/W2100976425, https://openalex.org/W1979575715, https://openalex.org/W2896018779, https://openalex.org/W2178225550, https://openalex.org/W4205539948, https://openalex.org/W2064675550, https://openalex.org/W3124142770, https://openalex.org/W2966607134, https://openalex.org/W2987640385, https://openalex.org/W2112796928, https://openalex.org/W3216454943, https://openalex.org/W2064843726, https://openalex.org/W4399992582, https://openalex.org/W2610886376, https://openalex.org/W4239754684, https://openalex.org/W4387955980, https://openalex.org/W4399810683, https://openalex.org/W4406080987, https://openalex.org/W3044355331, https://openalex.org/W4402043054, https://openalex.org/W2117014758, https://openalex.org/W3177318507, https://openalex.org/W3159338921, https://openalex.org/W1917509457, https://openalex.org/W1680392829 |
| referenced_works_count | 29 |
| abstract_inverted_index.( | 66 |
| abstract_inverted_index.) | 69 |
| abstract_inverted_index.2 | 68 |
| abstract_inverted_index.R | 67 |
| abstract_inverted_index.a | 4, 24, 62, 75, 112 |
| abstract_inverted_index.as | 70, 72, 81, 83 |
| abstract_inverted_index.in | 13, 43, 93 |
| abstract_inverted_index.of | 45, 64, 107, 134 |
| abstract_inverted_index.to | 95 |
| abstract_inverted_index.(1) | 22 |
| abstract_inverted_index.(2) | 48 |
| abstract_inverted_index.(3) | 85 |
| abstract_inverted_index.The | 18, 86 |
| abstract_inverted_index.and | 31, 74, 91, 99, 103, 115, 125, 132 |
| abstract_inverted_index.for | 10, 117, 128 |
| abstract_inverted_index.low | 82 |
| abstract_inverted_index.new | 113 |
| abstract_inverted_index.set | 52 |
| abstract_inverted_index.the | 8, 14, 35, 54, 105, 130 |
| abstract_inverted_index.This | 1, 109 |
| abstract_inverted_index.deep | 32 |
| abstract_inverted_index.high | 71 |
| abstract_inverted_index.mean | 76 |
| abstract_inverted_index.that | 21 |
| abstract_inverted_index.tool | 116 |
| abstract_inverted_index.with | 27, 122 |
| abstract_inverted_index.after | 104 |
| abstract_inverted_index.error | 79 |
| abstract_inverted_index.model | 56, 87 |
| abstract_inverted_index.novel | 5 |
| abstract_inverted_index.stock | 16 |
| abstract_inverted_index.study | 110 |
| abstract_inverted_index.terms | 44 |
| abstract_inverted_index.(MAPE) | 80 |
| abstract_inverted_index.0.9216 | 73 |
| abstract_inverted_index.Across | 49 |
| abstract_inverted_index.before | 102 |
| abstract_inverted_index.hybrid | 6 |
| abstract_inverted_index.market | 97, 120 |
| abstract_inverted_index.offers | 111 |
| abstract_inverted_index.strong | 89 |
| abstract_inverted_index.article | 2 |
| abstract_inverted_index.changes | 101 |
| abstract_inverted_index.machine | 29 |
| abstract_inverted_index.market. | 17 |
| abstract_inverted_index.methods | 42 |
| abstract_inverted_index.models, | 34 |
| abstract_inverted_index.through | 23 |
| abstract_inverted_index.various | 28 |
| abstract_inverted_index.ABSTRACT | 0 |
| abstract_inverted_index.absolute | 77 |
| abstract_inverted_index.findings | 19 |
| abstract_inverted_index.learning | 30, 33 |
| abstract_inverted_index.markets. | 136 |
| abstract_inverted_index.outbreak | 106 |
| abstract_inverted_index.proposed | 3, 36 |
| abstract_inverted_index.training | 51 |
| abstract_inverted_index.13.6947%. | 84 |
| abstract_inverted_index.achieving | 61 |
| abstract_inverted_index.different | 50 |
| abstract_inverted_index.enhancing | 129 |
| abstract_inverted_index.exhibited | 88 |
| abstract_inverted_index.financial | 119, 135 |
| abstract_inverted_index.framework | 38 |
| abstract_inverted_index.indicated | 20 |
| abstract_inverted_index.practical | 126 |
| abstract_inverted_index.stability | 133 |
| abstract_inverted_index.Australian | 15 |
| abstract_inverted_index.comparison | 26 |
| abstract_inverted_index.efficiency | 131 |
| abstract_inverted_index.framework, | 7 |
| abstract_inverted_index.percentage | 78 |
| abstract_inverted_index.predictive | 46 |
| abstract_inverted_index.responding | 94 |
| abstract_inverted_index.robustness | 92 |
| abstract_inverted_index.structural | 100 |
| abstract_inverted_index.volatility | 12 |
| abstract_inverted_index.COVID‐19. | 108 |
| abstract_inverted_index.coefficient | 63 |
| abstract_inverted_index.exceptional | 58 |
| abstract_inverted_index.forecasting | 11, 59, 118 |
| abstract_inverted_index.perspective | 114 |
| abstract_inverted_index.significant | 96 |
| abstract_inverted_index.substantial | 123 |
| abstract_inverted_index.theoretical | 124 |
| abstract_inverted_index.traditional | 41 |
| abstract_inverted_index.volatility, | 121 |
| abstract_inverted_index.adaptability | 90 |
| abstract_inverted_index.demonstrated | 57 |
| abstract_inverted_index.fluctuations | 98 |
| abstract_inverted_index.implications | 127 |
| abstract_inverted_index.outperformed | 40 |
| abstract_inverted_index.performance. | 47 |
| abstract_inverted_index.proportions, | 53 |
| abstract_inverted_index.capabilities, | 60 |
| abstract_inverted_index.comprehensive | 25 |
| abstract_inverted_index.determination | 65 |
| abstract_inverted_index.significantly | 39 |
| abstract_inverted_index.WTC‐DCA‐Informer | 37, 55 |
| abstract_inverted_index.WTC‐DCA‐Informer, | 9 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.9924581 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |