Foreign object segmentation in chest x-rays through anatomy-guided shape insertion Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2501.12022
In this paper, we tackle the challenge of instance segmentation for foreign objects in chest radiographs, commonly seen in postoperative follow-ups with stents, pacemakers, or ingested objects in children. The diversity of foreign objects complicates dense annotation, as shown in insufficient existing datasets. To address this, we propose the simple generation of synthetic data through (1) insertion of arbitrary shapes (lines, polygons, ellipses) with varying contrasts and opacities, and (2) cut-paste augmentations from a small set of semi-automatically extracted labels. These insertions are guided by anatomy labels to ensure realistic placements, such as stents appearing only in relevant vessels. Our approach enables networks to segment complex structures with minimal manually labeled data. Notably, it achieves performance comparable to fully supervised models while using 93\% fewer manual annotations.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2501.12022
- https://arxiv.org/pdf/2501.12022
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406745542
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406745542Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2501.12022Digital Object Identifier
- Title
-
Foreign object segmentation in chest x-rays through anatomy-guided shape insertionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-21Full publication date if available
- Authors
-
Constantin Seibold, Hamza Kalisch, Lukas Heine, Simon Reiß, Jens KleesiekList of authors in order
- Landing page
-
https://arxiv.org/abs/2501.12022Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2501.12022Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2501.12022Direct OA link when available
- Concepts
-
Segmentation, Anatomy, Object (grammar), Foreign Bodies, Medicine, Computer science, Artificial intelligence, Computer vision, SurgeryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406745542 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2501.12022 |
| ids.doi | https://doi.org/10.48550/arxiv.2501.12022 |
| ids.openalex | https://openalex.org/W4406745542 |
| fwci | |
| type | preprint |
| title | Foreign object segmentation in chest x-rays through anatomy-guided shape insertion |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12386 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9908999800682068 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Advanced X-ray and CT Imaging |
| topics[1].id | https://openalex.org/T12422 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9876999855041504 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[2].id | https://openalex.org/T14510 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9753000140190125 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Medical Imaging and Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C89600930 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6580263376235962 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[0].display_name | Segmentation |
| concepts[1].id | https://openalex.org/C105702510 |
| concepts[1].level | 1 |
| concepts[1].score | 0.578280508518219 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q514 |
| concepts[1].display_name | Anatomy |
| concepts[2].id | https://openalex.org/C2781238097 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5626233816146851 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[2].display_name | Object (grammar) |
| concepts[3].id | https://openalex.org/C2779664554 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4953536093235016 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q48834880 |
| concepts[3].display_name | Foreign Bodies |
| concepts[4].id | https://openalex.org/C71924100 |
| concepts[4].level | 0 |
| concepts[4].score | 0.43707650899887085 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[4].display_name | Medicine |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3591918349266052 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.347445011138916 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C31972630 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3217201232910156 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[7].display_name | Computer vision |
| concepts[8].id | https://openalex.org/C141071460 |
| concepts[8].level | 1 |
| concepts[8].score | 0.1506602168083191 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q40821 |
| concepts[8].display_name | Surgery |
| keywords[0].id | https://openalex.org/keywords/segmentation |
| keywords[0].score | 0.6580263376235962 |
| keywords[0].display_name | Segmentation |
| keywords[1].id | https://openalex.org/keywords/anatomy |
| keywords[1].score | 0.578280508518219 |
| keywords[1].display_name | Anatomy |
| keywords[2].id | https://openalex.org/keywords/object |
| keywords[2].score | 0.5626233816146851 |
| keywords[2].display_name | Object (grammar) |
| keywords[3].id | https://openalex.org/keywords/foreign-bodies |
| keywords[3].score | 0.4953536093235016 |
| keywords[3].display_name | Foreign Bodies |
| keywords[4].id | https://openalex.org/keywords/medicine |
| keywords[4].score | 0.43707650899887085 |
| keywords[4].display_name | Medicine |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.3591918349266052 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.347445011138916 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/computer-vision |
| keywords[7].score | 0.3217201232910156 |
| keywords[7].display_name | Computer vision |
| keywords[8].id | https://openalex.org/keywords/surgery |
| keywords[8].score | 0.1506602168083191 |
| keywords[8].display_name | Surgery |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2501.12022 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2501.12022 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2501.12022 |
| locations[1].id | doi:10.48550/arxiv.2501.12022 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2501.12022 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5084474018 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6042-8437 |
| authorships[0].author.display_name | Constantin Seibold |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Seibold, Constantin |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5035348965 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Hamza Kalisch |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kalisch, Hamza |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5092355592 |
| authorships[2].author.orcid | https://orcid.org/0009-0004-3405-0556 |
| authorships[2].author.display_name | Lukas Heine |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Heine, Lukas |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5091379199 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1953-6211 |
| authorships[3].author.display_name | Simon Reiß |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Reiß, Simon |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5017161970 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8686-0682 |
| authorships[4].author.display_name | Jens Kleesiek |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Kleesiek, Jens |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2501.12022 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Foreign object segmentation in chest x-rays through anatomy-guided shape insertion |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12386 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9908999800682068 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Advanced X-ray and CT Imaging |
| related_works | https://openalex.org/W4400267834, https://openalex.org/W2383337799, https://openalex.org/W2362258892, https://openalex.org/W4379231730, https://openalex.org/W2387139366, https://openalex.org/W2388784220, https://openalex.org/W4389858081, https://openalex.org/W2737719445, https://openalex.org/W2329471541, https://openalex.org/W2393125020 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2501.12022 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2501.12022 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2501.12022 |
| primary_location.id | pmh:oai:arXiv.org:2501.12022 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2501.12022 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2501.12022 |
| publication_date | 2025-01-21 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 73 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.To | 43 |
| abstract_inverted_index.as | 37, 92 |
| abstract_inverted_index.by | 84 |
| abstract_inverted_index.in | 13, 18, 27, 39, 96 |
| abstract_inverted_index.it | 113 |
| abstract_inverted_index.of | 7, 31, 51, 57, 76 |
| abstract_inverted_index.or | 24 |
| abstract_inverted_index.to | 87, 103, 117 |
| abstract_inverted_index.we | 3, 46 |
| abstract_inverted_index.(1) | 55 |
| abstract_inverted_index.(2) | 69 |
| abstract_inverted_index.Our | 99 |
| abstract_inverted_index.The | 29 |
| abstract_inverted_index.and | 66, 68 |
| abstract_inverted_index.are | 82 |
| abstract_inverted_index.for | 10 |
| abstract_inverted_index.set | 75 |
| abstract_inverted_index.the | 5, 48 |
| abstract_inverted_index.93\% | 123 |
| abstract_inverted_index.data | 53 |
| abstract_inverted_index.from | 72 |
| abstract_inverted_index.only | 95 |
| abstract_inverted_index.seen | 17 |
| abstract_inverted_index.such | 91 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.with | 21, 63, 107 |
| abstract_inverted_index.These | 80 |
| abstract_inverted_index.chest | 14 |
| abstract_inverted_index.data. | 111 |
| abstract_inverted_index.dense | 35 |
| abstract_inverted_index.fewer | 124 |
| abstract_inverted_index.fully | 118 |
| abstract_inverted_index.shown | 38 |
| abstract_inverted_index.small | 74 |
| abstract_inverted_index.this, | 45 |
| abstract_inverted_index.using | 122 |
| abstract_inverted_index.while | 121 |
| abstract_inverted_index.ensure | 88 |
| abstract_inverted_index.guided | 83 |
| abstract_inverted_index.labels | 86 |
| abstract_inverted_index.manual | 125 |
| abstract_inverted_index.models | 120 |
| abstract_inverted_index.paper, | 2 |
| abstract_inverted_index.shapes | 59 |
| abstract_inverted_index.simple | 49 |
| abstract_inverted_index.stents | 93 |
| abstract_inverted_index.tackle | 4 |
| abstract_inverted_index.(lines, | 60 |
| abstract_inverted_index.address | 44 |
| abstract_inverted_index.anatomy | 85 |
| abstract_inverted_index.complex | 105 |
| abstract_inverted_index.enables | 101 |
| abstract_inverted_index.foreign | 11, 32 |
| abstract_inverted_index.labeled | 110 |
| abstract_inverted_index.labels. | 79 |
| abstract_inverted_index.minimal | 108 |
| abstract_inverted_index.objects | 12, 26, 33 |
| abstract_inverted_index.propose | 47 |
| abstract_inverted_index.segment | 104 |
| abstract_inverted_index.stents, | 22 |
| abstract_inverted_index.through | 54 |
| abstract_inverted_index.varying | 64 |
| abstract_inverted_index.Notably, | 112 |
| abstract_inverted_index.achieves | 114 |
| abstract_inverted_index.approach | 100 |
| abstract_inverted_index.commonly | 16 |
| abstract_inverted_index.existing | 41 |
| abstract_inverted_index.ingested | 25 |
| abstract_inverted_index.instance | 8 |
| abstract_inverted_index.manually | 109 |
| abstract_inverted_index.networks | 102 |
| abstract_inverted_index.relevant | 97 |
| abstract_inverted_index.vessels. | 98 |
| abstract_inverted_index.appearing | 94 |
| abstract_inverted_index.arbitrary | 58 |
| abstract_inverted_index.challenge | 6 |
| abstract_inverted_index.children. | 28 |
| abstract_inverted_index.contrasts | 65 |
| abstract_inverted_index.cut-paste | 70 |
| abstract_inverted_index.datasets. | 42 |
| abstract_inverted_index.diversity | 30 |
| abstract_inverted_index.ellipses) | 62 |
| abstract_inverted_index.extracted | 78 |
| abstract_inverted_index.insertion | 56 |
| abstract_inverted_index.polygons, | 61 |
| abstract_inverted_index.realistic | 89 |
| abstract_inverted_index.synthetic | 52 |
| abstract_inverted_index.comparable | 116 |
| abstract_inverted_index.follow-ups | 20 |
| abstract_inverted_index.generation | 50 |
| abstract_inverted_index.insertions | 81 |
| abstract_inverted_index.opacities, | 67 |
| abstract_inverted_index.structures | 106 |
| abstract_inverted_index.supervised | 119 |
| abstract_inverted_index.annotation, | 36 |
| abstract_inverted_index.complicates | 34 |
| abstract_inverted_index.pacemakers, | 23 |
| abstract_inverted_index.performance | 115 |
| abstract_inverted_index.placements, | 90 |
| abstract_inverted_index.annotations. | 126 |
| abstract_inverted_index.insufficient | 40 |
| abstract_inverted_index.radiographs, | 15 |
| abstract_inverted_index.segmentation | 9 |
| abstract_inverted_index.augmentations | 71 |
| abstract_inverted_index.postoperative | 19 |
| abstract_inverted_index.semi-automatically | 77 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |