Forensic Breakthrough for Crime Scene Analysis via Mobile Data and NLP Applications Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.33425/3066-1226.1102
With the rise of digital communication, chat logs have become a crucial source of evidence in forensic investigations. The crime scene analysis by integrating Natural Language Processing (NLP) techniques to analyze chat data for identifying key information, suspect behavior, and potential criminal intent. Using advanced NLP methods such as sentiment analysis, named entity recognition, and text classification, it can detect hidden connections, and contextual meanings within conversations. This automated analysis enhances the efficiency and accuracy of forensic investigations, reducing manual effort and enabling law enforcement to make data-driven decisions. By leveraging chat-based forensic analysis, this contributes to modern crime-solving techniques, offering a powerful tool for digital evidence examination. Advancements in Natural Language Processing (NLP) and digital forensics have revolutionized crime scene investigations, particularly in analyzing digital communication for crucial evidence. forensic breakthrough that leverages chat logs and NLP applications to extract, analyze, and interpret conversations relevant to criminal cases. By providing law enforcement agencies with an intelligent and scalable tool for chat-based forensic analysis, this significantly improves digital evidence handling, accelerates crime resolution, and supports judicial proceedings with data-driven insights. It ultimately contributes to modern forensic science by bridging the gap between technology and criminal investigations, making digital communication a key asset in solving crimes efficiently.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.33425/3066-1226.1102
- https://www.sciencexcel.com/articles/tnyO3Te6WzQS2ps1GVifSCfxSDQ9XV3M0Geu7OmS.pdf
- OA Status
- hybrid
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409904785
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409904785Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.33425/3066-1226.1102Digital Object Identifier
- Title
-
Forensic Breakthrough for Crime Scene Analysis via Mobile Data and NLP ApplicationsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-22Full publication date if available
- Authors
-
Krishna Mohan Buddaraju, Khateeb Syed Muskan, Baldev Raj, Jenne Sumithra, Gogula Sai Ganesh, Sachin KumarList of authors in order
- Landing page
-
https://doi.org/10.33425/3066-1226.1102Publisher landing page
- PDF URL
-
https://www.sciencexcel.com/articles/tnyO3Te6WzQS2ps1GVifSCfxSDQ9XV3M0Geu7OmS.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://www.sciencexcel.com/articles/tnyO3Te6WzQS2ps1GVifSCfxSDQ9XV3M0Geu7OmS.pdfDirect OA link when available
- Concepts
-
Computer science, Artificial intelligence, Natural language processingTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409904785 |
|---|---|
| doi | https://doi.org/10.33425/3066-1226.1102 |
| ids.doi | https://doi.org/10.33425/3066-1226.1102 |
| ids.openalex | https://openalex.org/W4409904785 |
| fwci | 0.0 |
| type | article |
| title | Forensic Breakthrough for Crime Scene Analysis via Mobile Data and NLP Applications |
| biblio.issue | 2 |
| biblio.volume | 5 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12034 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.992900013923645 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Digital and Cyber Forensics |
| topics[1].id | https://openalex.org/T11241 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9096999764442444 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Advanced Malware Detection Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5853974223136902 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5614573955535889 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C204321447 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5313029289245605 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[2].display_name | Natural language processing |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5853974223136902 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.5614573955535889 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/natural-language-processing |
| keywords[2].score | 0.5313029289245605 |
| keywords[2].display_name | Natural language processing |
| language | en |
| locations[0].id | doi:10.33425/3066-1226.1102 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S5407048723 |
| locations[0].source.issn | 3066-1226 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 3066-1226 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Global Journal of Engineering Innovations and Interdisciplinary Research |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.sciencexcel.com/articles/tnyO3Te6WzQS2ps1GVifSCfxSDQ9XV3M0Geu7OmS.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Global Journal of Engineering Innovations and Interdisciplinary Research |
| locations[0].landing_page_url | https://doi.org/10.33425/3066-1226.1102 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5082833283 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4214-4892 |
| authorships[0].author.display_name | Krishna Mohan Buddaraju |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Krishna Veni B |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5117368089 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Khateeb Syed Muskan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Khateeb Syed Muskan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5078758808 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9184-1988 |
| authorships[2].author.display_name | Baldev Raj |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Bingi Pranitha Raj |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5117368090 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Jenne Sumithra |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jenne Sumithra |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5023662016 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Gogula Sai Ganesh |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Gogula Sai Ganesh |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5090500943 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-5324-2156 |
| authorships[5].author.display_name | Sachin Kumar |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Subramanyam Sujeeth Kumar |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.sciencexcel.com/articles/tnyO3Te6WzQS2ps1GVifSCfxSDQ9XV3M0Geu7OmS.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Forensic Breakthrough for Crime Scene Analysis via Mobile Data and NLP Applications |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12034 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.992900013923645 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Digital and Cyber Forensics |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W3204019825 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.33425/3066-1226.1102 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S5407048723 |
| best_oa_location.source.issn | 3066-1226 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 3066-1226 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Global Journal of Engineering Innovations and Interdisciplinary Research |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.sciencexcel.com/articles/tnyO3Te6WzQS2ps1GVifSCfxSDQ9XV3M0Geu7OmS.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Global Journal of Engineering Innovations and Interdisciplinary Research |
| best_oa_location.landing_page_url | https://doi.org/10.33425/3066-1226.1102 |
| primary_location.id | doi:10.33425/3066-1226.1102 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S5407048723 |
| primary_location.source.issn | 3066-1226 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 3066-1226 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Global Journal of Engineering Innovations and Interdisciplinary Research |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.sciencexcel.com/articles/tnyO3Te6WzQS2ps1GVifSCfxSDQ9XV3M0Geu7OmS.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Global Journal of Engineering Innovations and Interdisciplinary Research |
| primary_location.landing_page_url | https://doi.org/10.33425/3066-1226.1102 |
| publication_date | 2025-04-22 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 10, 101, 199 |
| abstract_inverted_index.By | 89, 149 |
| abstract_inverted_index.It | 180 |
| abstract_inverted_index.an | 155 |
| abstract_inverted_index.as | 48 |
| abstract_inverted_index.by | 22, 187 |
| abstract_inverted_index.in | 15, 109, 123, 202 |
| abstract_inverted_index.it | 57 |
| abstract_inverted_index.of | 3, 13, 75 |
| abstract_inverted_index.to | 29, 85, 96, 139, 146, 183 |
| abstract_inverted_index.NLP | 45, 137 |
| abstract_inverted_index.The | 18 |
| abstract_inverted_index.and | 39, 54, 62, 73, 81, 114, 136, 142, 157, 173, 193 |
| abstract_inverted_index.can | 58 |
| abstract_inverted_index.for | 33, 104, 127, 160 |
| abstract_inverted_index.gap | 190 |
| abstract_inverted_index.key | 35, 200 |
| abstract_inverted_index.law | 83, 151 |
| abstract_inverted_index.the | 1, 71, 189 |
| abstract_inverted_index.This | 67 |
| abstract_inverted_index.With | 0 |
| abstract_inverted_index.chat | 6, 31, 134 |
| abstract_inverted_index.data | 32 |
| abstract_inverted_index.have | 8, 117 |
| abstract_inverted_index.logs | 7, 135 |
| abstract_inverted_index.make | 86 |
| abstract_inverted_index.rise | 2 |
| abstract_inverted_index.such | 47 |
| abstract_inverted_index.text | 55 |
| abstract_inverted_index.that | 132 |
| abstract_inverted_index.this | 94, 164 |
| abstract_inverted_index.tool | 103, 159 |
| abstract_inverted_index.with | 154, 177 |
| abstract_inverted_index.(NLP) | 27, 113 |
| abstract_inverted_index.Using | 43 |
| abstract_inverted_index.asset | 201 |
| abstract_inverted_index.crime | 19, 119, 171 |
| abstract_inverted_index.named | 51 |
| abstract_inverted_index.scene | 20, 120 |
| abstract_inverted_index.become | 9 |
| abstract_inverted_index.cases. | 148 |
| abstract_inverted_index.crimes | 204 |
| abstract_inverted_index.detect | 59 |
| abstract_inverted_index.effort | 80 |
| abstract_inverted_index.entity | 52 |
| abstract_inverted_index.hidden | 60 |
| abstract_inverted_index.making | 196 |
| abstract_inverted_index.manual | 79 |
| abstract_inverted_index.modern | 97, 184 |
| abstract_inverted_index.source | 12 |
| abstract_inverted_index.within | 65 |
| abstract_inverted_index.Natural | 24, 110 |
| abstract_inverted_index.analyze | 30 |
| abstract_inverted_index.between | 191 |
| abstract_inverted_index.crucial | 11, 128 |
| abstract_inverted_index.digital | 4, 105, 115, 125, 167, 197 |
| abstract_inverted_index.intent. | 42 |
| abstract_inverted_index.methods | 46 |
| abstract_inverted_index.science | 186 |
| abstract_inverted_index.solving | 203 |
| abstract_inverted_index.suspect | 37 |
| abstract_inverted_index.Language | 25, 111 |
| abstract_inverted_index.accuracy | 74 |
| abstract_inverted_index.advanced | 44 |
| abstract_inverted_index.agencies | 153 |
| abstract_inverted_index.analysis | 21, 69 |
| abstract_inverted_index.analyze, | 141 |
| abstract_inverted_index.bridging | 188 |
| abstract_inverted_index.criminal | 41, 147, 194 |
| abstract_inverted_index.enabling | 82 |
| abstract_inverted_index.enhances | 70 |
| abstract_inverted_index.evidence | 14, 106, 168 |
| abstract_inverted_index.extract, | 140 |
| abstract_inverted_index.forensic | 16, 76, 92, 130, 162, 185 |
| abstract_inverted_index.improves | 166 |
| abstract_inverted_index.judicial | 175 |
| abstract_inverted_index.meanings | 64 |
| abstract_inverted_index.offering | 100 |
| abstract_inverted_index.powerful | 102 |
| abstract_inverted_index.reducing | 78 |
| abstract_inverted_index.relevant | 145 |
| abstract_inverted_index.scalable | 158 |
| abstract_inverted_index.supports | 174 |
| abstract_inverted_index.analysis, | 50, 93, 163 |
| abstract_inverted_index.analyzing | 124 |
| abstract_inverted_index.automated | 68 |
| abstract_inverted_index.behavior, | 38 |
| abstract_inverted_index.evidence. | 129 |
| abstract_inverted_index.forensics | 116 |
| abstract_inverted_index.handling, | 169 |
| abstract_inverted_index.insights. | 179 |
| abstract_inverted_index.interpret | 143 |
| abstract_inverted_index.leverages | 133 |
| abstract_inverted_index.potential | 40 |
| abstract_inverted_index.providing | 150 |
| abstract_inverted_index.sentiment | 49 |
| abstract_inverted_index.Processing | 26, 112 |
| abstract_inverted_index.chat-based | 91, 161 |
| abstract_inverted_index.contextual | 63 |
| abstract_inverted_index.decisions. | 88 |
| abstract_inverted_index.efficiency | 72 |
| abstract_inverted_index.leveraging | 90 |
| abstract_inverted_index.techniques | 28 |
| abstract_inverted_index.technology | 192 |
| abstract_inverted_index.ultimately | 181 |
| abstract_inverted_index.accelerates | 170 |
| abstract_inverted_index.contributes | 95, 182 |
| abstract_inverted_index.data-driven | 87, 178 |
| abstract_inverted_index.enforcement | 84, 152 |
| abstract_inverted_index.identifying | 34 |
| abstract_inverted_index.integrating | 23 |
| abstract_inverted_index.intelligent | 156 |
| abstract_inverted_index.proceedings | 176 |
| abstract_inverted_index.resolution, | 172 |
| abstract_inverted_index.techniques, | 99 |
| abstract_inverted_index.Advancements | 108 |
| abstract_inverted_index.applications | 138 |
| abstract_inverted_index.breakthrough | 131 |
| abstract_inverted_index.connections, | 61 |
| abstract_inverted_index.efficiently. | 205 |
| abstract_inverted_index.examination. | 107 |
| abstract_inverted_index.information, | 36 |
| abstract_inverted_index.particularly | 122 |
| abstract_inverted_index.recognition, | 53 |
| abstract_inverted_index.communication | 126, 198 |
| abstract_inverted_index.conversations | 144 |
| abstract_inverted_index.crime-solving | 98 |
| abstract_inverted_index.significantly | 165 |
| abstract_inverted_index.communication, | 5 |
| abstract_inverted_index.conversations. | 66 |
| abstract_inverted_index.revolutionized | 118 |
| abstract_inverted_index.classification, | 56 |
| abstract_inverted_index.investigations, | 77, 121, 195 |
| abstract_inverted_index.investigations. | 17 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.18006166 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |