Forensics Investigation Framework for Advanced Threat Detection in Quantum-Era Networks Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.17485/ijst/v18i44.1401
Objectives: To address the urgent need for forensic systems capable of detecting and analyzing advanced persistent threats in hybrid quantum-classical communication infrastructures, particularly those that may compromise quantum key distribution environments. Method: The study introduces a Quantum-Aware Forensics Investigation Framework, a multi-layered forensic architecture combining quantum telemetry, classical metadata analysis, and machine learning-driven threat classification. Experimental validation was conducted using a simulated testbed built with SimulaQron, Wireshark, and custom scripting tools. Various quantum attack scenarios were emulated, including intercept-resend, entanglement flooding, and control-plane hijacking. Machine learning models Random Forest, SVM, and Autoencoder were tested as standalone classifiers. A stacked ensemble model, with Random Forest and SVM as base learners and Logistic Regression as meta-classifier, was implemented for performance optimization. We used an experimentally generated, cross-layer dataset from a SimulaQron BB84 QKD emulation by combining quantum logs and classical control-plane captures under benign and scripted attacks such as intercept–resend, entanglement flooding, payload obfuscation, session hijacking, spoofing. Parameters studied were quantum - QBER, event inter-arrival jitter, event/count rate and classical - packet/flow statistics, inter-arrival mean/variance, latency proxy, TCP SYN/RST flags, byte-level Shannon entropy, with labels for benign vs. attack class. Findings: The standalone models achieved moderate performance on the held-out test set for Random Forest: ROC AUC = 0.93, F1 = 0.90, MCC = 0.86, Brier = 0.072; SVM (RBF): ROC AUC = 0.91, F1 = 0.88, MCC = 0.82, Brier = 0.081; Autoencoder (one-class): ROC AUC = 0.87, F1 = 0.83, MCC = 0.74, Brier = 0.094. By contrast, the stacked ensemble delivered perfect detection metrics for ROC AUC = 1.00, F1 = 1.00, MCC = 1.00, and Brier = 0.014. The study further emphasized the need for forensic systems to support explainability and continuous adaptability via Explainable AI and online learning with drift detection. Novelty: This study presents a cross-layer forensic framework for quantum–classical hybrid networks that fuses QKD telemetry with classical control-plane evidence and machine-learning analytics. Unlike prior work that treats these planes separately, our design unifies event-level QKD signals such QBER, arrival-time jitter with packet/flow features to produce timestamp-aligned, explainable alerts. In evaluation, the stacked-ensemble detector achieved perfect detection metrics for ROC AUC, F1, MCC and Brier on held-out data, which distinctly outperformed single-model baselines. The framework couples these gains with an XAI layer and an online, drift-aware learning loop, providing a scalable, auditable, and resilient foundation for forensic intelligence in the quantum era. Keywords: Quantum network forensics, QKD security, Advanced threat detection, Hybrid quantum-classical networks, Quantum-safe evidence, SimulaQron, Quantum cybersecurity
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.17485/ijst/v18i44.1401
- https://sciresol.s3.us-east-2.amazonaws.com/IJST/Articles/2025/Issue-44/IJST-2025-1401.pdf
- OA Status
- diamond
- OpenAlex ID
- https://openalex.org/W4417120344
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4417120344Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.17485/ijst/v18i44.1401Digital Object Identifier
- Title
-
Forensics Investigation Framework for Advanced Threat Detection in Quantum-Era NetworksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-08Full publication date if available
- Authors
-
Owusu Nyarko-Boateng, Samuel Boateng, Adebayo Felix Adekoya, Benjamin Asubam Weyori, Faiza Umar Bawah, Peter Nimbe, Foster Yeboah, Henrietta Adjei PokuaList of authors in order
- Landing page
-
https://doi.org/10.17485/ijst/v18i44.1401Publisher landing page
- PDF URL
-
https://sciresol.s3.us-east-2.amazonaws.com/IJST/Articles/2025/Issue-44/IJST-2025-1401.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://sciresol.s3.us-east-2.amazonaws.com/IJST/Articles/2025/Issue-44/IJST-2025-1401.pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4417120344 |
|---|---|
| doi | https://doi.org/10.17485/ijst/v18i44.1401 |
| ids.doi | https://doi.org/10.17485/ijst/v18i44.1401 |
| ids.openalex | https://openalex.org/W4417120344 |
| fwci | |
| type | article |
| title | Forensics Investigation Framework for Advanced Threat Detection in Quantum-Era Networks |
| biblio.issue | 44 |
| biblio.volume | 18 |
| biblio.last_page | 3543 |
| biblio.first_page | 3524 |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.17485/ijst/v18i44.1401 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764746358 |
| locations[0].source.issn | 0974-5645, 0974-6846 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0974-5645 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Indian Journal of Science and Technology |
| locations[0].source.host_organization | https://openalex.org/P4322615647 |
| locations[0].source.host_organization_name | Indian Society for Education and Environment |
| locations[0].source.host_organization_lineage | https://openalex.org/P4322615647 |
| locations[0].source.host_organization_lineage_names | Indian Society for Education and Environment |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://sciresol.s3.us-east-2.amazonaws.com/IJST/Articles/2025/Issue-44/IJST-2025-1401.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Indian Journal Of Science And Technology |
| locations[0].landing_page_url | https://doi.org/10.17485/ijst/v18i44.1401 |
| locations[1].id | pmh:oai:zenodo.org:17863372 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400562 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[1].source.host_organization | https://openalex.org/I67311998 |
| locations[1].source.host_organization_name | European Organization for Nuclear Research |
| locations[1].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Indian Journal of Science and Technology, 18(44), 3524-3543, (2025-12-09) |
| locations[1].landing_page_url | https://doi.org/10.17485/IJST/v18i44.1401 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5051720336 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Owusu Nyarko-Boateng |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Owusu Nyarko-Boateng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5037105310 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0307-3286 |
| authorships[1].author.display_name | Samuel Boateng |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Samuel Boateng |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5064291326 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5029-2393 |
| authorships[2].author.display_name | Adebayo Felix Adekoya |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Adebayo Felix Adekoya |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5064716614 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5422-4251 |
| authorships[3].author.display_name | Benjamin Asubam Weyori |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Benjamin Asubam Weyori |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5062695176 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8482-9849 |
| authorships[4].author.display_name | Faiza Umar Bawah |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Faiza Umar Bawah |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5068146656 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6823-5274 |
| authorships[5].author.display_name | Peter Nimbe |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Peter Nimbe |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5109745364 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Foster Yeboah |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Foster Yeboah |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5120722736 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Henrietta Adjei Pokua |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Henrietta Adjei Pokua |
| authorships[7].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://sciresol.s3.us-east-2.amazonaws.com/IJST/Articles/2025/Issue-44/IJST-2025-1401.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-08T00:00:00 |
| display_name | Forensics Investigation Framework for Advanced Threat Detection in Quantum-Era Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-10T02:45:41.426853 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.17485/ijst/v18i44.1401 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764746358 |
| best_oa_location.source.issn | 0974-5645, 0974-6846 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0974-5645 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Indian Journal of Science and Technology |
| best_oa_location.source.host_organization | https://openalex.org/P4322615647 |
| best_oa_location.source.host_organization_name | Indian Society for Education and Environment |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4322615647 |
| best_oa_location.source.host_organization_lineage_names | Indian Society for Education and Environment |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://sciresol.s3.us-east-2.amazonaws.com/IJST/Articles/2025/Issue-44/IJST-2025-1401.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Indian Journal Of Science And Technology |
| best_oa_location.landing_page_url | https://doi.org/10.17485/ijst/v18i44.1401 |
| primary_location.id | doi:10.17485/ijst/v18i44.1401 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764746358 |
| primary_location.source.issn | 0974-5645, 0974-6846 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0974-5645 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Indian Journal of Science and Technology |
| primary_location.source.host_organization | https://openalex.org/P4322615647 |
| primary_location.source.host_organization_name | Indian Society for Education and Environment |
| primary_location.source.host_organization_lineage | https://openalex.org/P4322615647 |
| primary_location.source.host_organization_lineage_names | Indian Society for Education and Environment |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://sciresol.s3.us-east-2.amazonaws.com/IJST/Articles/2025/Issue-44/IJST-2025-1401.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Indian Journal Of Science And Technology |
| primary_location.landing_page_url | https://doi.org/10.17485/ijst/v18i44.1401 |
| publication_date | 2025-12-08 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.- | 159, 168 |
| abstract_inverted_index.= | 205, 208, 211, 214, 220, 223, 226, 229, 235, 238, 241, 244, 258, 261, 264, 268 |
| abstract_inverted_index.A | 97 |
| abstract_inverted_index.a | 35, 40, 60, 127, 298, 383 |
| abstract_inverted_index.AI | 287 |
| abstract_inverted_index.By | 246 |
| abstract_inverted_index.F1 | 207, 222, 237, 260 |
| abstract_inverted_index.In | 343 |
| abstract_inverted_index.To | 1 |
| abstract_inverted_index.We | 119 |
| abstract_inverted_index.an | 121, 373, 377 |
| abstract_inverted_index.as | 94, 106, 112, 146 |
| abstract_inverted_index.by | 132 |
| abstract_inverted_index.in | 17, 392 |
| abstract_inverted_index.of | 10 |
| abstract_inverted_index.on | 195, 359 |
| abstract_inverted_index.to | 279, 338 |
| abstract_inverted_index.AUC | 204, 219, 234, 257 |
| abstract_inverted_index.F1, | 355 |
| abstract_inverted_index.MCC | 210, 225, 240, 263, 356 |
| abstract_inverted_index.QKD | 130, 308, 329, 400 |
| abstract_inverted_index.ROC | 203, 218, 233, 256, 353 |
| abstract_inverted_index.SVM | 105, 216 |
| abstract_inverted_index.TCP | 175 |
| abstract_inverted_index.The | 32, 189, 270, 367 |
| abstract_inverted_index.XAI | 374 |
| abstract_inverted_index.and | 12, 50, 67, 81, 90, 104, 109, 136, 142, 166, 266, 282, 288, 314, 357, 376, 386 |
| abstract_inverted_index.for | 6, 116, 183, 200, 255, 276, 302, 352, 389 |
| abstract_inverted_index.key | 28 |
| abstract_inverted_index.may | 25 |
| abstract_inverted_index.our | 325 |
| abstract_inverted_index.set | 199 |
| abstract_inverted_index.the | 3, 196, 248, 274, 345, 393 |
| abstract_inverted_index.via | 285 |
| abstract_inverted_index.vs. | 185 |
| abstract_inverted_index.was | 57, 114 |
| abstract_inverted_index.AUC, | 354 |
| abstract_inverted_index.BB84 | 129 |
| abstract_inverted_index.SVM, | 89 |
| abstract_inverted_index.This | 295 |
| abstract_inverted_index.base | 107 |
| abstract_inverted_index.era. | 395 |
| abstract_inverted_index.from | 126 |
| abstract_inverted_index.logs | 135 |
| abstract_inverted_index.need | 5, 275 |
| abstract_inverted_index.rate | 165 |
| abstract_inverted_index.such | 145, 331 |
| abstract_inverted_index.test | 198 |
| abstract_inverted_index.that | 24, 306, 320 |
| abstract_inverted_index.used | 120 |
| abstract_inverted_index.were | 75, 92, 157 |
| abstract_inverted_index.with | 64, 101, 181, 291, 310, 335, 372 |
| abstract_inverted_index.work | 319 |
| abstract_inverted_index.0.74, | 242 |
| abstract_inverted_index.0.82, | 227 |
| abstract_inverted_index.0.83, | 239 |
| abstract_inverted_index.0.86, | 212 |
| abstract_inverted_index.0.87, | 236 |
| abstract_inverted_index.0.88, | 224 |
| abstract_inverted_index.0.90, | 209 |
| abstract_inverted_index.0.91, | 221 |
| abstract_inverted_index.0.93, | 206 |
| abstract_inverted_index.1.00, | 259, 262, 265 |
| abstract_inverted_index.Brier | 213, 228, 243, 267, 358 |
| abstract_inverted_index.QBER, | 160, 332 |
| abstract_inverted_index.built | 63 |
| abstract_inverted_index.data, | 361 |
| abstract_inverted_index.drift | 292 |
| abstract_inverted_index.event | 161 |
| abstract_inverted_index.fuses | 307 |
| abstract_inverted_index.gains | 371 |
| abstract_inverted_index.layer | 375 |
| abstract_inverted_index.loop, | 381 |
| abstract_inverted_index.prior | 318 |
| abstract_inverted_index.study | 33, 271, 296 |
| abstract_inverted_index.these | 322, 370 |
| abstract_inverted_index.those | 23 |
| abstract_inverted_index.under | 140 |
| abstract_inverted_index.using | 59 |
| abstract_inverted_index.which | 362 |
| abstract_inverted_index.(RBF): | 217 |
| abstract_inverted_index.0.014. | 269 |
| abstract_inverted_index.0.072; | 215 |
| abstract_inverted_index.0.081; | 230 |
| abstract_inverted_index.0.094. | 245 |
| abstract_inverted_index.Forest | 103 |
| abstract_inverted_index.Hybrid | 405 |
| abstract_inverted_index.Random | 87, 102, 201 |
| abstract_inverted_index.Unlike | 317 |
| abstract_inverted_index.attack | 73, 186 |
| abstract_inverted_index.benign | 141, 184 |
| abstract_inverted_index.class. | 187 |
| abstract_inverted_index.custom | 68 |
| abstract_inverted_index.design | 326 |
| abstract_inverted_index.flags, | 177 |
| abstract_inverted_index.hybrid | 18, 304 |
| abstract_inverted_index.jitter | 334 |
| abstract_inverted_index.labels | 182 |
| abstract_inverted_index.model, | 100 |
| abstract_inverted_index.models | 86, 191 |
| abstract_inverted_index.online | 289 |
| abstract_inverted_index.planes | 323 |
| abstract_inverted_index.proxy, | 174 |
| abstract_inverted_index.tested | 93 |
| abstract_inverted_index.threat | 53, 403 |
| abstract_inverted_index.tools. | 70 |
| abstract_inverted_index.treats | 321 |
| abstract_inverted_index.urgent | 4 |
| abstract_inverted_index.Forest, | 88 |
| abstract_inverted_index.Forest: | 202 |
| abstract_inverted_index.Machine | 84 |
| abstract_inverted_index.Method: | 31 |
| abstract_inverted_index.Quantum | 397, 411 |
| abstract_inverted_index.SYN/RST | 176 |
| abstract_inverted_index.Shannon | 179 |
| abstract_inverted_index.Various | 71 |
| abstract_inverted_index.address | 2 |
| abstract_inverted_index.alerts. | 342 |
| abstract_inverted_index.attacks | 144 |
| abstract_inverted_index.capable | 9 |
| abstract_inverted_index.couples | 369 |
| abstract_inverted_index.dataset | 125 |
| abstract_inverted_index.further | 272 |
| abstract_inverted_index.jitter, | 163 |
| abstract_inverted_index.latency | 173 |
| abstract_inverted_index.machine | 51 |
| abstract_inverted_index.metrics | 254, 351 |
| abstract_inverted_index.network | 398 |
| abstract_inverted_index.online, | 378 |
| abstract_inverted_index.payload | 150 |
| abstract_inverted_index.perfect | 252, 349 |
| abstract_inverted_index.produce | 339 |
| abstract_inverted_index.quantum | 27, 45, 72, 134, 158, 394 |
| abstract_inverted_index.session | 152 |
| abstract_inverted_index.signals | 330 |
| abstract_inverted_index.stacked | 98, 249 |
| abstract_inverted_index.studied | 156 |
| abstract_inverted_index.support | 280 |
| abstract_inverted_index.systems | 8, 278 |
| abstract_inverted_index.testbed | 62 |
| abstract_inverted_index.threats | 16 |
| abstract_inverted_index.unifies | 327 |
| abstract_inverted_index.Advanced | 402 |
| abstract_inverted_index.Logistic | 110 |
| abstract_inverted_index.Novelty: | 294 |
| abstract_inverted_index.achieved | 192, 348 |
| abstract_inverted_index.advanced | 14 |
| abstract_inverted_index.captures | 139 |
| abstract_inverted_index.detector | 347 |
| abstract_inverted_index.ensemble | 99, 250 |
| abstract_inverted_index.entropy, | 180 |
| abstract_inverted_index.evidence | 313 |
| abstract_inverted_index.features | 337 |
| abstract_inverted_index.forensic | 7, 42, 277, 300, 390 |
| abstract_inverted_index.held-out | 197, 360 |
| abstract_inverted_index.learners | 108 |
| abstract_inverted_index.learning | 85, 290, 380 |
| abstract_inverted_index.metadata | 48 |
| abstract_inverted_index.moderate | 193 |
| abstract_inverted_index.networks | 305 |
| abstract_inverted_index.presents | 297 |
| abstract_inverted_index.scripted | 143 |
| abstract_inverted_index.Findings: | 188 |
| abstract_inverted_index.Forensics | 37 |
| abstract_inverted_index.Keywords: | 396 |
| abstract_inverted_index.analysis, | 49 |
| abstract_inverted_index.analyzing | 13 |
| abstract_inverted_index.classical | 47, 137, 167, 311 |
| abstract_inverted_index.combining | 44, 133 |
| abstract_inverted_index.conducted | 58 |
| abstract_inverted_index.contrast, | 247 |
| abstract_inverted_index.delivered | 251 |
| abstract_inverted_index.detecting | 11 |
| abstract_inverted_index.detection | 253, 350 |
| abstract_inverted_index.emulated, | 76 |
| abstract_inverted_index.emulation | 131 |
| abstract_inverted_index.evidence, | 409 |
| abstract_inverted_index.flooding, | 80, 149 |
| abstract_inverted_index.framework | 301, 368 |
| abstract_inverted_index.including | 77 |
| abstract_inverted_index.networks, | 407 |
| abstract_inverted_index.providing | 382 |
| abstract_inverted_index.resilient | 387 |
| abstract_inverted_index.scalable, | 384 |
| abstract_inverted_index.scenarios | 74 |
| abstract_inverted_index.scripting | 69 |
| abstract_inverted_index.security, | 401 |
| abstract_inverted_index.simulated | 61 |
| abstract_inverted_index.spoofing. | 154 |
| abstract_inverted_index.telemetry | 309 |
| abstract_inverted_index.Framework, | 39 |
| abstract_inverted_index.Parameters | 155 |
| abstract_inverted_index.Regression | 111 |
| abstract_inverted_index.SimulaQron | 128 |
| abstract_inverted_index.Wireshark, | 66 |
| abstract_inverted_index.analytics. | 316 |
| abstract_inverted_index.auditable, | 385 |
| abstract_inverted_index.baselines. | 366 |
| abstract_inverted_index.byte-level | 178 |
| abstract_inverted_index.compromise | 26 |
| abstract_inverted_index.continuous | 283 |
| abstract_inverted_index.detection, | 404 |
| abstract_inverted_index.detection. | 293 |
| abstract_inverted_index.distinctly | 363 |
| abstract_inverted_index.emphasized | 273 |
| abstract_inverted_index.forensics, | 399 |
| abstract_inverted_index.foundation | 388 |
| abstract_inverted_index.generated, | 123 |
| abstract_inverted_index.hijacking, | 153 |
| abstract_inverted_index.hijacking. | 83 |
| abstract_inverted_index.introduces | 34 |
| abstract_inverted_index.persistent | 15 |
| abstract_inverted_index.standalone | 95, 190 |
| abstract_inverted_index.telemetry, | 46 |
| abstract_inverted_index.validation | 56 |
| abstract_inverted_index.Autoencoder | 91, 231 |
| abstract_inverted_index.Explainable | 286 |
| abstract_inverted_index.Objectives: | 0 |
| abstract_inverted_index.SimulaQron, | 65, 410 |
| abstract_inverted_index.cross-layer | 124, 299 |
| abstract_inverted_index.drift-aware | 379 |
| abstract_inverted_index.evaluation, | 344 |
| abstract_inverted_index.event-level | 328 |
| abstract_inverted_index.event/count | 164 |
| abstract_inverted_index.explainable | 341 |
| abstract_inverted_index.implemented | 115 |
| abstract_inverted_index.packet/flow | 169, 336 |
| abstract_inverted_index.performance | 117, 194 |
| abstract_inverted_index.separately, | 324 |
| abstract_inverted_index.statistics, | 170 |
| abstract_inverted_index.(one-class): | 232 |
| abstract_inverted_index.Experimental | 55 |
| abstract_inverted_index.Quantum-safe | 408 |
| abstract_inverted_index.adaptability | 284 |
| abstract_inverted_index.architecture | 43 |
| abstract_inverted_index.arrival-time | 333 |
| abstract_inverted_index.classifiers. | 96 |
| abstract_inverted_index.distribution | 29 |
| abstract_inverted_index.entanglement | 79, 148 |
| abstract_inverted_index.intelligence | 391 |
| abstract_inverted_index.obfuscation, | 151 |
| abstract_inverted_index.outperformed | 364 |
| abstract_inverted_index.particularly | 22 |
| abstract_inverted_index.single-model | 365 |
| abstract_inverted_index.Investigation | 38 |
| abstract_inverted_index.Quantum-Aware | 36 |
| abstract_inverted_index.communication | 20 |
| abstract_inverted_index.control-plane | 82, 138, 312 |
| abstract_inverted_index.cybersecurity | 412 |
| abstract_inverted_index.environments. | 30 |
| abstract_inverted_index.inter-arrival | 162, 171 |
| abstract_inverted_index.multi-layered | 41 |
| abstract_inverted_index.optimization. | 118 |
| abstract_inverted_index.experimentally | 122 |
| abstract_inverted_index.explainability | 281 |
| abstract_inverted_index.mean/variance, | 172 |
| abstract_inverted_index.classification. | 54 |
| abstract_inverted_index.learning-driven | 52 |
| abstract_inverted_index.infrastructures, | 21 |
| abstract_inverted_index.machine-learning | 315 |
| abstract_inverted_index.meta-classifier, | 113 |
| abstract_inverted_index.stacked-ensemble | 346 |
| abstract_inverted_index.intercept-resend, | 78 |
| abstract_inverted_index.quantum-classical | 19, 406 |
| abstract_inverted_index.timestamp-aligned, | 340 |
| abstract_inverted_index.intercept–resend, | 147 |
| abstract_inverted_index.quantum–classical | 303 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |