Forest Aboveground Biomass Estimation Using Airborne LiDAR: A Systematic Review and Meta-Analysis Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1007/s44392-025-00029-w
Forest aboveground biomass (AGB) estimation is crucial for understanding carbon dynamics and supporting Reducing Emissions from Deforestation and Forest Degradation (REDD +) initiatives. It has gained significant research interest, evident in the skyrocketing number of peer-reviewed journal articles over the past decade alone. The availability of free and open-access airborne light detection and ranging (LiDAR) data has further accelerated the development of advanced AGB modeling approaches. However, a comprehensive summary of milestones achieved in AGB estimation using airborne LiDAR is still lacking. Our study aims to fill this gap by summarizing AGB model errors with respect to different data sources, forest biomes, and methods used. The overall objective of the study was to conduct a systematic review and meta-analysis of peer-reviewed journal articles on AGB estimation using airborne LiDAR published between 2013 and 2023. We followed the Preferred Reporting Items for Systematic Reviews and Meta- Analysis (PRISMA) framework to select 52 articles. Results indicate that most studies on AGB using airborne LiDAR were carried out in tropical biomes and employed multiple linear regression analysis as the modeling method. Results also show Root Mean Square Error as the most preferred model evaluation metric. Additionally, we concluded that meta-analysis of studies with a controlled predictor variable and modeling method produced less heterogeneous results (I 2 = 91.67% and Q = 399.97) as compared to the overall meta-analysis (I 2 = 96.38% and Q = 6648.28). The findings provide new insights to researchers for advancing AGB estimation accuracy using airborne LiDAR.
Related Topics
- Type
- review
- Language
- en
- Landing Page
- https://doi.org/10.1007/s44392-025-00029-w
- https://link.springer.com/content/pdf/10.1007/s44392-025-00029-w.pdf
- OA Status
- hybrid
- Cited By
- 2
- References
- 69
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410903197
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410903197Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s44392-025-00029-wDigital Object Identifier
- Title
-
Forest Aboveground Biomass Estimation Using Airborne LiDAR: A Systematic Review and Meta-AnalysisWork title
- Type
-
reviewOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-30Full publication date if available
- Authors
-
Nisham Thapa, Lana L. Narine, Alan E. WilsonList of authors in order
- Landing page
-
https://doi.org/10.1007/s44392-025-00029-wPublisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s44392-025-00029-w.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s44392-025-00029-w.pdfDirect OA link when available
- Concepts
-
Environmental science, Biomass (ecology), Lidar, Remote sensing, Estimation, Forestry, Geography, Ecology, Biology, Engineering, Systems engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
69Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410903197 |
|---|---|
| doi | https://doi.org/10.1007/s44392-025-00029-w |
| ids.doi | https://doi.org/10.1007/s44392-025-00029-w |
| ids.openalex | https://openalex.org/W4410903197 |
| fwci | 4.08287243 |
| type | review |
| title | Forest Aboveground Biomass Estimation Using Airborne LiDAR: A Systematic Review and Meta-Analysis |
| awards[0].id | https://openalex.org/G4460117303 |
| awards[0].funder_id | https://openalex.org/F4320332478 |
| awards[0].display_name | |
| awards[0].funder_award_id | 22-JV-11330180-064 |
| awards[0].funder_display_name | U.S. Forest Service |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11164 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Remote Sensing and LiDAR Applications |
| topics[1].id | https://openalex.org/T12713 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9983000159263611 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1109 |
| topics[1].subfield.display_name | Insect Science |
| topics[1].display_name | Forest Ecology and Biodiversity Studies |
| topics[2].id | https://openalex.org/T11880 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9977999925613403 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2309 |
| topics[2].subfield.display_name | Nature and Landscape Conservation |
| topics[2].display_name | Forest ecology and management |
| funders[0].id | https://openalex.org/F4320332478 |
| funders[0].ror | https://ror.org/03zmjc935 |
| funders[0].display_name | U.S. Forest Service |
| is_xpac | False |
| apc_list.value | 4015 |
| apc_list.currency | USD |
| apc_list.value_usd | 4015 |
| apc_paid.value | 4015 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 4015 |
| concepts[0].id | https://openalex.org/C39432304 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6946526765823364 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[0].display_name | Environmental science |
| concepts[1].id | https://openalex.org/C115540264 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6521942615509033 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2945560 |
| concepts[1].display_name | Biomass (ecology) |
| concepts[2].id | https://openalex.org/C51399673 |
| concepts[2].level | 2 |
| concepts[2].score | 0.604668378829956 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q504027 |
| concepts[2].display_name | Lidar |
| concepts[3].id | https://openalex.org/C62649853 |
| concepts[3].level | 1 |
| concepts[3].score | 0.581445574760437 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[3].display_name | Remote sensing |
| concepts[4].id | https://openalex.org/C96250715 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4836622178554535 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q965330 |
| concepts[4].display_name | Estimation |
| concepts[5].id | https://openalex.org/C97137747 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3984142243862152 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q38112 |
| concepts[5].display_name | Forestry |
| concepts[6].id | https://openalex.org/C205649164 |
| concepts[6].level | 0 |
| concepts[6].score | 0.29851454496383667 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[6].display_name | Geography |
| concepts[7].id | https://openalex.org/C18903297 |
| concepts[7].level | 1 |
| concepts[7].score | 0.1736222207546234 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[7].display_name | Ecology |
| concepts[8].id | https://openalex.org/C86803240 |
| concepts[8].level | 0 |
| concepts[8].score | 0.08200916647911072 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[8].display_name | Biology |
| concepts[9].id | https://openalex.org/C127413603 |
| concepts[9].level | 0 |
| concepts[9].score | 0.06347942352294922 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[9].display_name | Engineering |
| concepts[10].id | https://openalex.org/C201995342 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[10].display_name | Systems engineering |
| keywords[0].id | https://openalex.org/keywords/environmental-science |
| keywords[0].score | 0.6946526765823364 |
| keywords[0].display_name | Environmental science |
| keywords[1].id | https://openalex.org/keywords/biomass |
| keywords[1].score | 0.6521942615509033 |
| keywords[1].display_name | Biomass (ecology) |
| keywords[2].id | https://openalex.org/keywords/lidar |
| keywords[2].score | 0.604668378829956 |
| keywords[2].display_name | Lidar |
| keywords[3].id | https://openalex.org/keywords/remote-sensing |
| keywords[3].score | 0.581445574760437 |
| keywords[3].display_name | Remote sensing |
| keywords[4].id | https://openalex.org/keywords/estimation |
| keywords[4].score | 0.4836622178554535 |
| keywords[4].display_name | Estimation |
| keywords[5].id | https://openalex.org/keywords/forestry |
| keywords[5].score | 0.3984142243862152 |
| keywords[5].display_name | Forestry |
| keywords[6].id | https://openalex.org/keywords/geography |
| keywords[6].score | 0.29851454496383667 |
| keywords[6].display_name | Geography |
| keywords[7].id | https://openalex.org/keywords/ecology |
| keywords[7].score | 0.1736222207546234 |
| keywords[7].display_name | Ecology |
| keywords[8].id | https://openalex.org/keywords/biology |
| keywords[8].score | 0.08200916647911072 |
| keywords[8].display_name | Biology |
| keywords[9].id | https://openalex.org/keywords/engineering |
| keywords[9].score | 0.06347942352294922 |
| keywords[9].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1007/s44392-025-00029-w |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S9838493 |
| locations[0].source.issn | 0022-1201, 1938-3746 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0022-1201 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Forestry |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s44392-025-00029-w.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Forestry |
| locations[0].landing_page_url | https://doi.org/10.1007/s44392-025-00029-w |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5092895755 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Nisham Thapa |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nisham Thapa |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5085367509 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6125-7649 |
| authorships[1].author.display_name | Lana L. Narine |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lana L. Narine |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5063349034 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1080-0354 |
| authorships[2].author.display_name | Alan E. Wilson |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Alan E. Wilson |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s44392-025-00029-w.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Forest Aboveground Biomass Estimation Using Airborne LiDAR: A Systematic Review and Meta-Analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11164 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Remote Sensing and LiDAR Applications |
| related_works | https://openalex.org/W4319317934, https://openalex.org/W4406302447, https://openalex.org/W2901265155, https://openalex.org/W2956374172, https://openalex.org/W2351984678, https://openalex.org/W2140032575, https://openalex.org/W2011860471, https://openalex.org/W2012196540, https://openalex.org/W3011451421, https://openalex.org/W4313466491 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1007/s44392-025-00029-w |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S9838493 |
| best_oa_location.source.issn | 0022-1201, 1938-3746 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0022-1201 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Forestry |
| best_oa_location.source.host_organization | https://openalex.org/P4310311648 |
| best_oa_location.source.host_organization_name | Oxford University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s44392-025-00029-w.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Forestry |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s44392-025-00029-w |
| primary_location.id | doi:10.1007/s44392-025-00029-w |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S9838493 |
| primary_location.source.issn | 0022-1201, 1938-3746 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0022-1201 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Forestry |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s44392-025-00029-w.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Forestry |
| primary_location.landing_page_url | https://doi.org/10.1007/s44392-025-00029-w |
| publication_date | 2025-05-30 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2353139366, https://openalex.org/W4308509959, https://openalex.org/W2566759027, https://openalex.org/W4396948560, https://openalex.org/W3094404397, https://openalex.org/W2053902032, https://openalex.org/W2794636625, https://openalex.org/W2217052705, https://openalex.org/W2188418355, https://openalex.org/W4384131924, https://openalex.org/W3196466396, https://openalex.org/W600210939, https://openalex.org/W3014417423, https://openalex.org/W4205698403, https://openalex.org/W2596636264, https://openalex.org/W2092491956, https://openalex.org/W4240484632, https://openalex.org/W1973503268, https://openalex.org/W2075373322, https://openalex.org/W2911534439, https://openalex.org/W2789545189, https://openalex.org/W3080412126, https://openalex.org/W2804246752, https://openalex.org/W2014818337, https://openalex.org/W35344886, https://openalex.org/W3153743275, https://openalex.org/W4307901261, https://openalex.org/W2154607623, https://openalex.org/W3163746330, https://openalex.org/W263478603, https://openalex.org/W2531947845, https://openalex.org/W4286007868, https://openalex.org/W2012519352, https://openalex.org/W2538282875, https://openalex.org/W4388194683, https://openalex.org/W4387774013, https://openalex.org/W2070149168, https://openalex.org/W1998779060, https://openalex.org/W3128848044, https://openalex.org/W1965597456, https://openalex.org/W2254244704, https://openalex.org/W3033817632, https://openalex.org/W1987794512, https://openalex.org/W2033499003, https://openalex.org/W2557040271, https://openalex.org/W1822357580, https://openalex.org/W3123893780, https://openalex.org/W4365446272, https://openalex.org/W1985467342, https://openalex.org/W2761205564, https://openalex.org/W4378229293, https://openalex.org/W2155714399, https://openalex.org/W4213235672, https://openalex.org/W2272119240, https://openalex.org/W4386068720, https://openalex.org/W4366824070, https://openalex.org/W3081690111, https://openalex.org/W4295886832, https://openalex.org/W2060297838, https://openalex.org/W3111227849, https://openalex.org/W4293149833, https://openalex.org/W4386833615, https://openalex.org/W2139168999, https://openalex.org/W2944707852, https://openalex.org/W2010221273, https://openalex.org/W4316652579, https://openalex.org/W4313527770, https://openalex.org/W2127354426, https://openalex.org/W2002730835 |
| referenced_works_count | 69 |
| abstract_inverted_index.2 | 213, 227 |
| abstract_inverted_index.= | 214, 218, 228, 232 |
| abstract_inverted_index.Q | 217, 231 |
| abstract_inverted_index.a | 68, 115, 201 |
| abstract_inverted_index.(I | 212, 226 |
| abstract_inverted_index.+) | 22 |
| abstract_inverted_index.52 | 151 |
| abstract_inverted_index.It | 24 |
| abstract_inverted_index.We | 135 |
| abstract_inverted_index.as | 175, 186, 220 |
| abstract_inverted_index.by | 90 |
| abstract_inverted_index.in | 31, 74, 166 |
| abstract_inverted_index.is | 6, 80 |
| abstract_inverted_index.of | 35, 46, 62, 71, 109, 120, 198 |
| abstract_inverted_index.on | 124, 158 |
| abstract_inverted_index.to | 86, 97, 113, 149, 222, 239 |
| abstract_inverted_index.we | 194 |
| abstract_inverted_index.AGB | 64, 75, 92, 125, 159, 243 |
| abstract_inverted_index.Our | 83 |
| abstract_inverted_index.The | 44, 106, 234 |
| abstract_inverted_index.and | 12, 18, 48, 53, 103, 118, 133, 144, 169, 205, 216, 230 |
| abstract_inverted_index.for | 8, 141, 241 |
| abstract_inverted_index.gap | 89 |
| abstract_inverted_index.has | 25, 57 |
| abstract_inverted_index.new | 237 |
| abstract_inverted_index.out | 165 |
| abstract_inverted_index.the | 32, 40, 60, 110, 137, 176, 187, 223 |
| abstract_inverted_index.was | 112 |
| abstract_inverted_index.2013 | 132 |
| abstract_inverted_index.Mean | 183 |
| abstract_inverted_index.Root | 182 |
| abstract_inverted_index.aims | 85 |
| abstract_inverted_index.also | 180 |
| abstract_inverted_index.data | 56, 99 |
| abstract_inverted_index.fill | 87 |
| abstract_inverted_index.free | 47 |
| abstract_inverted_index.from | 16 |
| abstract_inverted_index.less | 209 |
| abstract_inverted_index.most | 156, 188 |
| abstract_inverted_index.over | 39 |
| abstract_inverted_index.past | 41 |
| abstract_inverted_index.show | 181 |
| abstract_inverted_index.that | 155, 196 |
| abstract_inverted_index.this | 88 |
| abstract_inverted_index.were | 163 |
| abstract_inverted_index.with | 95, 200 |
| abstract_inverted_index.(AGB) | 4 |
| abstract_inverted_index.(REDD | 21 |
| abstract_inverted_index.2023. | 134 |
| abstract_inverted_index.Error | 185 |
| abstract_inverted_index.Items | 140 |
| abstract_inverted_index.LiDAR | 79, 129, 162 |
| abstract_inverted_index.Meta- | 145 |
| abstract_inverted_index.light | 51 |
| abstract_inverted_index.model | 93, 190 |
| abstract_inverted_index.still | 81 |
| abstract_inverted_index.study | 84, 111 |
| abstract_inverted_index.used. | 105 |
| abstract_inverted_index.using | 77, 127, 160, 246 |
| abstract_inverted_index.91.67% | 215 |
| abstract_inverted_index.96.38% | 229 |
| abstract_inverted_index.Forest | 1, 19 |
| abstract_inverted_index.LiDAR. | 248 |
| abstract_inverted_index.Square | 184 |
| abstract_inverted_index.alone. | 43 |
| abstract_inverted_index.biomes | 168 |
| abstract_inverted_index.carbon | 10 |
| abstract_inverted_index.decade | 42 |
| abstract_inverted_index.errors | 94 |
| abstract_inverted_index.forest | 101 |
| abstract_inverted_index.gained | 26 |
| abstract_inverted_index.linear | 172 |
| abstract_inverted_index.method | 207 |
| abstract_inverted_index.number | 34 |
| abstract_inverted_index.review | 117 |
| abstract_inverted_index.select | 150 |
| abstract_inverted_index.(LiDAR) | 55 |
| abstract_inverted_index.399.97) | 219 |
| abstract_inverted_index.Results | 153, 179 |
| abstract_inverted_index.Reviews | 143 |
| abstract_inverted_index.between | 131 |
| abstract_inverted_index.biomass | 3 |
| abstract_inverted_index.biomes, | 102 |
| abstract_inverted_index.carried | 164 |
| abstract_inverted_index.conduct | 114 |
| abstract_inverted_index.crucial | 7 |
| abstract_inverted_index.evident | 30 |
| abstract_inverted_index.further | 58 |
| abstract_inverted_index.journal | 37, 122 |
| abstract_inverted_index.method. | 178 |
| abstract_inverted_index.methods | 104 |
| abstract_inverted_index.metric. | 192 |
| abstract_inverted_index.overall | 107, 224 |
| abstract_inverted_index.provide | 236 |
| abstract_inverted_index.ranging | 54 |
| abstract_inverted_index.respect | 96 |
| abstract_inverted_index.results | 211 |
| abstract_inverted_index.studies | 157, 199 |
| abstract_inverted_index.summary | 70 |
| abstract_inverted_index.(PRISMA) | 147 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Analysis | 146 |
| abstract_inverted_index.However, | 67 |
| abstract_inverted_index.Reducing | 14 |
| abstract_inverted_index.accuracy | 245 |
| abstract_inverted_index.achieved | 73 |
| abstract_inverted_index.advanced | 63 |
| abstract_inverted_index.airborne | 50, 78, 128, 161, 247 |
| abstract_inverted_index.analysis | 174 |
| abstract_inverted_index.articles | 38, 123 |
| abstract_inverted_index.compared | 221 |
| abstract_inverted_index.dynamics | 11 |
| abstract_inverted_index.employed | 170 |
| abstract_inverted_index.findings | 235 |
| abstract_inverted_index.followed | 136 |
| abstract_inverted_index.indicate | 154 |
| abstract_inverted_index.insights | 238 |
| abstract_inverted_index.lacking. | 82 |
| abstract_inverted_index.modeling | 65, 177, 206 |
| abstract_inverted_index.multiple | 171 |
| abstract_inverted_index.produced | 208 |
| abstract_inverted_index.research | 28 |
| abstract_inverted_index.sources, | 100 |
| abstract_inverted_index.tropical | 167 |
| abstract_inverted_index.variable | 204 |
| abstract_inverted_index.6648.28). | 233 |
| abstract_inverted_index.Emissions | 15 |
| abstract_inverted_index.Preferred | 138 |
| abstract_inverted_index.Reporting | 139 |
| abstract_inverted_index.advancing | 242 |
| abstract_inverted_index.articles. | 152 |
| abstract_inverted_index.concluded | 195 |
| abstract_inverted_index.detection | 52 |
| abstract_inverted_index.different | 98 |
| abstract_inverted_index.framework | 148 |
| abstract_inverted_index.interest, | 29 |
| abstract_inverted_index.objective | 108 |
| abstract_inverted_index.predictor | 203 |
| abstract_inverted_index.preferred | 189 |
| abstract_inverted_index.published | 130 |
| abstract_inverted_index.Systematic | 142 |
| abstract_inverted_index.controlled | 202 |
| abstract_inverted_index.estimation | 5, 76, 126, 244 |
| abstract_inverted_index.evaluation | 191 |
| abstract_inverted_index.milestones | 72 |
| abstract_inverted_index.regression | 173 |
| abstract_inverted_index.supporting | 13 |
| abstract_inverted_index.systematic | 116 |
| abstract_inverted_index.Degradation | 20 |
| abstract_inverted_index.aboveground | 2 |
| abstract_inverted_index.accelerated | 59 |
| abstract_inverted_index.approaches. | 66 |
| abstract_inverted_index.development | 61 |
| abstract_inverted_index.open-access | 49 |
| abstract_inverted_index.researchers | 240 |
| abstract_inverted_index.significant | 27 |
| abstract_inverted_index.summarizing | 91 |
| abstract_inverted_index.availability | 45 |
| abstract_inverted_index.initiatives. | 23 |
| abstract_inverted_index.skyrocketing | 33 |
| abstract_inverted_index.Additionally, | 193 |
| abstract_inverted_index.Deforestation | 17 |
| abstract_inverted_index.comprehensive | 69 |
| abstract_inverted_index.heterogeneous | 210 |
| abstract_inverted_index.meta-analysis | 119, 197, 225 |
| abstract_inverted_index.peer-reviewed | 36, 121 |
| abstract_inverted_index.understanding | 9 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.8864571 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |