Forgetting Fast in Recommender Systems Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2208.06875
Users of a recommender system may want part of their data being deleted, not only from the data repository but also from the underlying machine learning model, for privacy or utility reasons. Such right-to-be-forgotten requests could be fulfilled by simply retraining the recommendation model from scratch, but that would be too slow and too expensive in practice. In this paper, we investigate fast machine unlearning techniques for recommender systems that can remove the effect of a small amount of training data from the recommendation model without incurring the full cost of retraining. A natural idea to speed this process up is to fine-tune the current recommendation model on the remaining training data instead of starting from a random initialization. This warm-start strategy indeed works for neural recommendation models using standard 1st-order neural network optimizers (like AdamW). However, we have found that even greater acceleration could be achieved by employing 2nd-order (Newton or quasi-Newton) optimization methods instead. To overcome the prohibitively high computational cost of 2nd-order optimizers, we propose a new recommendation unlearning approach AltEraser which divides the optimization problem of unlearning into many small tractable sub-problems. Extensive experiments on three real-world recommendation datasets show promising results of AltEraser in terms of consistency (forgetting thoroughness), accuracy (recommendation effectiveness), and efficiency (unlearning speed). To our knowledge, this work represents the first attempt at fast approximate machine unlearning for state-of-the-art neural recommendation models.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2208.06875
- https://arxiv.org/pdf/2208.06875
- OA Status
- green
- Cited By
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4292102111
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4292102111Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2208.06875Digital Object Identifier
- Title
-
Forgetting Fast in Recommender SystemsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-08-14Full publication date if available
- Authors
-
Wenyan Liu, Juncheng Wan, Xiaoling Wang, Weinan Zhang, Dell Zhang, Hang LiList of authors in order
- Landing page
-
https://arxiv.org/abs/2208.06875Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2208.06875Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2208.06875Direct OA link when available
- Concepts
-
Forgetting, Computer science, Recommender system, Retraining, Initialization, Artificial intelligence, Machine learning, Artificial neural network, Consistency (knowledge bases), Speedup, Process (computing), Parallel computing, Operating system, International trade, Linguistics, Business, Philosophy, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1, 2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4292102111 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2208.06875 |
| ids.doi | https://doi.org/10.48550/arxiv.2208.06875 |
| ids.openalex | https://openalex.org/W4292102111 |
| fwci | |
| type | preprint |
| title | Forgetting Fast in Recommender Systems |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11612 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.996999979019165 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Stochastic Gradient Optimization Techniques |
| topics[1].id | https://openalex.org/T10036 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.995199978351593 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Neural Network Applications |
| topics[2].id | https://openalex.org/T10203 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9940999746322632 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1710 |
| topics[2].subfield.display_name | Information Systems |
| topics[2].display_name | Recommender Systems and Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C7149132 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8850787878036499 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1377840 |
| concepts[0].display_name | Forgetting |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.8431662917137146 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C557471498 |
| concepts[2].level | 2 |
| concepts[2].score | 0.8113853335380554 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q554950 |
| concepts[2].display_name | Recommender system |
| concepts[3].id | https://openalex.org/C2778712577 |
| concepts[3].level | 2 |
| concepts[3].score | 0.729066789150238 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3505966 |
| concepts[3].display_name | Retraining |
| concepts[4].id | https://openalex.org/C114466953 |
| concepts[4].level | 2 |
| concepts[4].score | 0.706882894039154 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q6034165 |
| concepts[4].display_name | Initialization |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5998507738113403 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5529228448867798 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C50644808 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5189047455787659 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[7].display_name | Artificial neural network |
| concepts[8].id | https://openalex.org/C2776436953 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5180606842041016 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5163215 |
| concepts[8].display_name | Consistency (knowledge bases) |
| concepts[9].id | https://openalex.org/C68339613 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4886775314807892 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1549489 |
| concepts[9].display_name | Speedup |
| concepts[10].id | https://openalex.org/C98045186 |
| concepts[10].level | 2 |
| concepts[10].score | 0.46572253108024597 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[10].display_name | Process (computing) |
| concepts[11].id | https://openalex.org/C173608175 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0742938220500946 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[11].display_name | Parallel computing |
| concepts[12].id | https://openalex.org/C111919701 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[12].display_name | Operating system |
| concepts[13].id | https://openalex.org/C155202549 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q178803 |
| concepts[13].display_name | International trade |
| concepts[14].id | https://openalex.org/C41895202 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[14].display_name | Linguistics |
| concepts[15].id | https://openalex.org/C144133560 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[15].display_name | Business |
| concepts[16].id | https://openalex.org/C138885662 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[16].display_name | Philosophy |
| concepts[17].id | https://openalex.org/C199360897 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[17].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/forgetting |
| keywords[0].score | 0.8850787878036499 |
| keywords[0].display_name | Forgetting |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.8431662917137146 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/recommender-system |
| keywords[2].score | 0.8113853335380554 |
| keywords[2].display_name | Recommender system |
| keywords[3].id | https://openalex.org/keywords/retraining |
| keywords[3].score | 0.729066789150238 |
| keywords[3].display_name | Retraining |
| keywords[4].id | https://openalex.org/keywords/initialization |
| keywords[4].score | 0.706882894039154 |
| keywords[4].display_name | Initialization |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5998507738113403 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.5529228448867798 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[7].score | 0.5189047455787659 |
| keywords[7].display_name | Artificial neural network |
| keywords[8].id | https://openalex.org/keywords/consistency |
| keywords[8].score | 0.5180606842041016 |
| keywords[8].display_name | Consistency (knowledge bases) |
| keywords[9].id | https://openalex.org/keywords/speedup |
| keywords[9].score | 0.4886775314807892 |
| keywords[9].display_name | Speedup |
| keywords[10].id | https://openalex.org/keywords/process |
| keywords[10].score | 0.46572253108024597 |
| keywords[10].display_name | Process (computing) |
| keywords[11].id | https://openalex.org/keywords/parallel-computing |
| keywords[11].score | 0.0742938220500946 |
| keywords[11].display_name | Parallel computing |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2208.06875 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2208.06875 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2208.06875 |
| locations[1].id | doi:10.48550/arxiv.2208.06875 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2208.06875 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101487992 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9312-1295 |
| authorships[0].author.display_name | Wenyan Liu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Liu, Wenyan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5112895996 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Juncheng Wan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wan, Juncheng |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100344628 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4594-6946 |
| authorships[2].author.display_name | Xiaoling Wang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wang, Xiaoling |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5090720315 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0127-2425 |
| authorships[3].author.display_name | Weinan Zhang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhang, Weinan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5015784640 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8774-3725 |
| authorships[4].author.display_name | Dell Zhang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhang, Dell |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100455129 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-1230-4007 |
| authorships[5].author.display_name | Hang Li |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Li, Hang |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2208.06875 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Forgetting Fast in Recommender Systems |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11612 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.996999979019165 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Stochastic Gradient Optimization Techniques |
| related_works | https://openalex.org/W2058965144, https://openalex.org/W2164382479, https://openalex.org/W2146343568, https://openalex.org/W98480971, https://openalex.org/W2150291671, https://openalex.org/W2013643406, https://openalex.org/W2027972911, https://openalex.org/W2157978810, https://openalex.org/W2597809628, https://openalex.org/W3046370962 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2208.06875 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2208.06875 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2208.06875 |
| primary_location.id | pmh:oai:arXiv.org:2208.06875 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2208.06875 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2208.06875 |
| publication_date | 2022-08-14 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 92 |
| abstract_inverted_index.a | 2, 75, 116, 168 |
| abstract_inverted_index.In | 57 |
| abstract_inverted_index.To | 156, 211 |
| abstract_inverted_index.at | 220 |
| abstract_inverted_index.be | 36, 49, 145 |
| abstract_inverted_index.by | 38, 147 |
| abstract_inverted_index.in | 55, 198 |
| abstract_inverted_index.is | 100 |
| abstract_inverted_index.of | 1, 8, 74, 78, 90, 113, 163, 179, 196, 200 |
| abstract_inverted_index.on | 107, 188 |
| abstract_inverted_index.or | 29, 151 |
| abstract_inverted_index.to | 95, 101 |
| abstract_inverted_index.up | 99 |
| abstract_inverted_index.we | 60, 137, 166 |
| abstract_inverted_index.and | 52, 207 |
| abstract_inverted_index.but | 19, 46 |
| abstract_inverted_index.can | 70 |
| abstract_inverted_index.for | 27, 66, 124, 225 |
| abstract_inverted_index.may | 5 |
| abstract_inverted_index.new | 169 |
| abstract_inverted_index.not | 13 |
| abstract_inverted_index.our | 212 |
| abstract_inverted_index.the | 16, 22, 41, 72, 82, 87, 103, 108, 158, 176, 217 |
| abstract_inverted_index.too | 50, 53 |
| abstract_inverted_index.Such | 32 |
| abstract_inverted_index.This | 119 |
| abstract_inverted_index.also | 20 |
| abstract_inverted_index.cost | 89, 162 |
| abstract_inverted_index.data | 10, 17, 80, 111 |
| abstract_inverted_index.even | 141 |
| abstract_inverted_index.fast | 62, 221 |
| abstract_inverted_index.from | 15, 21, 44, 81, 115 |
| abstract_inverted_index.full | 88 |
| abstract_inverted_index.have | 138 |
| abstract_inverted_index.high | 160 |
| abstract_inverted_index.idea | 94 |
| abstract_inverted_index.into | 181 |
| abstract_inverted_index.many | 182 |
| abstract_inverted_index.only | 14 |
| abstract_inverted_index.part | 7 |
| abstract_inverted_index.show | 193 |
| abstract_inverted_index.slow | 51 |
| abstract_inverted_index.that | 47, 69, 140 |
| abstract_inverted_index.this | 58, 97, 214 |
| abstract_inverted_index.want | 6 |
| abstract_inverted_index.work | 215 |
| abstract_inverted_index.(like | 134 |
| abstract_inverted_index.Users | 0 |
| abstract_inverted_index.being | 11 |
| abstract_inverted_index.could | 35, 144 |
| abstract_inverted_index.first | 218 |
| abstract_inverted_index.found | 139 |
| abstract_inverted_index.model | 43, 84, 106 |
| abstract_inverted_index.small | 76, 183 |
| abstract_inverted_index.speed | 96 |
| abstract_inverted_index.terms | 199 |
| abstract_inverted_index.their | 9 |
| abstract_inverted_index.three | 189 |
| abstract_inverted_index.using | 128 |
| abstract_inverted_index.which | 174 |
| abstract_inverted_index.works | 123 |
| abstract_inverted_index.would | 48 |
| abstract_inverted_index.amount | 77 |
| abstract_inverted_index.effect | 73 |
| abstract_inverted_index.indeed | 122 |
| abstract_inverted_index.model, | 26 |
| abstract_inverted_index.models | 127 |
| abstract_inverted_index.neural | 125, 131, 227 |
| abstract_inverted_index.paper, | 59 |
| abstract_inverted_index.random | 117 |
| abstract_inverted_index.remove | 71 |
| abstract_inverted_index.simply | 39 |
| abstract_inverted_index.system | 4 |
| abstract_inverted_index.(Newton | 150 |
| abstract_inverted_index.AdamW). | 135 |
| abstract_inverted_index.attempt | 219 |
| abstract_inverted_index.current | 104 |
| abstract_inverted_index.divides | 175 |
| abstract_inverted_index.greater | 142 |
| abstract_inverted_index.instead | 112 |
| abstract_inverted_index.machine | 24, 63, 223 |
| abstract_inverted_index.methods | 154 |
| abstract_inverted_index.models. | 229 |
| abstract_inverted_index.natural | 93 |
| abstract_inverted_index.network | 132 |
| abstract_inverted_index.privacy | 28 |
| abstract_inverted_index.problem | 178 |
| abstract_inverted_index.process | 98 |
| abstract_inverted_index.propose | 167 |
| abstract_inverted_index.results | 195 |
| abstract_inverted_index.speed). | 210 |
| abstract_inverted_index.systems | 68 |
| abstract_inverted_index.utility | 30 |
| abstract_inverted_index.without | 85 |
| abstract_inverted_index.However, | 136 |
| abstract_inverted_index.accuracy | 204 |
| abstract_inverted_index.achieved | 146 |
| abstract_inverted_index.approach | 172 |
| abstract_inverted_index.datasets | 192 |
| abstract_inverted_index.deleted, | 12 |
| abstract_inverted_index.instead. | 155 |
| abstract_inverted_index.learning | 25 |
| abstract_inverted_index.overcome | 157 |
| abstract_inverted_index.reasons. | 31 |
| abstract_inverted_index.requests | 34 |
| abstract_inverted_index.scratch, | 45 |
| abstract_inverted_index.standard | 129 |
| abstract_inverted_index.starting | 114 |
| abstract_inverted_index.strategy | 121 |
| abstract_inverted_index.training | 79, 110 |
| abstract_inverted_index.1st-order | 130 |
| abstract_inverted_index.2nd-order | 149, 164 |
| abstract_inverted_index.AltEraser | 173, 197 |
| abstract_inverted_index.Extensive | 186 |
| abstract_inverted_index.employing | 148 |
| abstract_inverted_index.expensive | 54 |
| abstract_inverted_index.fine-tune | 102 |
| abstract_inverted_index.fulfilled | 37 |
| abstract_inverted_index.incurring | 86 |
| abstract_inverted_index.practice. | 56 |
| abstract_inverted_index.promising | 194 |
| abstract_inverted_index.remaining | 109 |
| abstract_inverted_index.tractable | 184 |
| abstract_inverted_index.efficiency | 208 |
| abstract_inverted_index.knowledge, | 213 |
| abstract_inverted_index.optimizers | 133 |
| abstract_inverted_index.real-world | 190 |
| abstract_inverted_index.repository | 18 |
| abstract_inverted_index.represents | 216 |
| abstract_inverted_index.retraining | 40 |
| abstract_inverted_index.techniques | 65 |
| abstract_inverted_index.underlying | 23 |
| abstract_inverted_index.unlearning | 64, 171, 180, 224 |
| abstract_inverted_index.warm-start | 120 |
| abstract_inverted_index.(forgetting | 202 |
| abstract_inverted_index.(unlearning | 209 |
| abstract_inverted_index.approximate | 222 |
| abstract_inverted_index.consistency | 201 |
| abstract_inverted_index.experiments | 187 |
| abstract_inverted_index.investigate | 61 |
| abstract_inverted_index.optimizers, | 165 |
| abstract_inverted_index.recommender | 3, 67 |
| abstract_inverted_index.retraining. | 91 |
| abstract_inverted_index.acceleration | 143 |
| abstract_inverted_index.optimization | 153, 177 |
| abstract_inverted_index.computational | 161 |
| abstract_inverted_index.prohibitively | 159 |
| abstract_inverted_index.quasi-Newton) | 152 |
| abstract_inverted_index.sub-problems. | 185 |
| abstract_inverted_index.recommendation | 42, 83, 105, 126, 170, 191, 228 |
| abstract_inverted_index.thoroughness), | 203 |
| abstract_inverted_index.(recommendation | 205 |
| abstract_inverted_index.effectiveness), | 206 |
| abstract_inverted_index.initialization. | 118 |
| abstract_inverted_index.state-of-the-art | 226 |
| abstract_inverted_index.right-to-be-forgotten | 33 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |