FPGA SoC Implementation of Adaptive Deep Neural Network-Based Multimodal Edge Intelligence for Internet of Medical Things Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/access.2025.3592729
In emergency healthcare services, accurate and timely decision-making is critical for the patient’s life and death. The emergence of edge intelligence enables these service goals achievable for Internet of Medical Things (IoMT) compared with cloud-centric approaches. To assist medical personnel in intensive care units (ICU), we present the design of a network edge gateway that performs resource-efficient, real-time data analytics. We develop a cloud-configurable deep neural network (DNN) intellectual property (IP) core with an adaptable hardware architecture that executes four different types of analysis on an edge gateway. Our developed IP core adaptively switches from one architecture to another only in one clock cycle, based on the type of input features. The proposed IP core analyzes raw multimodal signals such as ECG, PPG, accelerometer, and other to discover anomalies in critically ill patients and their surroundings. We have validated the robustness of our developed model by comparing it with benchmark machine learning models and their previous implementations. The results show that our adaptive DNN model has obtained a software accuracy of 99.2% for ECG, 91.4% for PPG, 95% for activity classification, and 98.7% for smoke detection with a five-fold cross-validation strategy. Three versions of adaptive DNN IP cores (8-bit, 16-bit, 24-bit) are implemented on SoC/FPGA and compared together to study the effect of bit precision on accuracy, resource utilization, and power consumption. The developed adaptive DNN IP cores with 16-bits require 680 nanoseconds with a power consumption of 309 milliwatts for a single inference with a speed of 1.47 mega samples per second. Our analysis shows that the decentralization of intelligence in the IP core reduces data size from 96.25% to 98.75%. This flexible IP core has achieved significant power and resource utilization performance compared to independent implementation without compromising latency and throughput.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2025.3592729
- OA Status
- gold
- Cited By
- 1
- References
- 77
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412718821
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412718821Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2025.3592729Digital Object Identifier
- Title
-
FPGA SoC Implementation of Adaptive Deep Neural Network-Based Multimodal Edge Intelligence for Internet of Medical ThingsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Nikhil B. Gaikwad, Smith K. Khare, Dinesh Mendhe, Hasan Mir, Sokol Kosta, U. Rajendra AcharyaList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2025.3592729Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/access.2025.3592729Direct OA link when available
- Concepts
-
Computer science, Field-programmable gate array, Internet of Things, Enhanced Data Rates for GSM Evolution, Edge computing, Artificial neural network, The Internet, Embedded system, Edge device, Computer architecture, Computer network, Artificial intelligence, World Wide Web, Operating system, Cloud computingTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
77Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412718821 |
|---|---|
| doi | https://doi.org/10.1109/access.2025.3592729 |
| ids.doi | https://doi.org/10.1109/access.2025.3592729 |
| ids.openalex | https://openalex.org/W4412718821 |
| fwci | 1.99286181 |
| type | article |
| title | FPGA SoC Implementation of Adaptive Deep Neural Network-Based Multimodal Edge Intelligence for Internet of Medical Things |
| biblio.issue | |
| biblio.volume | 13 |
| biblio.last_page | 134056 |
| biblio.first_page | 134041 |
| topics[0].id | https://openalex.org/T11196 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9965999722480774 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Non-Invasive Vital Sign Monitoring |
| topics[1].id | https://openalex.org/T10429 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9962999820709229 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | EEG and Brain-Computer Interfaces |
| topics[2].id | https://openalex.org/T11021 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9883999824523926 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2705 |
| topics[2].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[2].display_name | ECG Monitoring and Analysis |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8181208968162537 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C42935608 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7655495405197144 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q190411 |
| concepts[1].display_name | Field-programmable gate array |
| concepts[2].id | https://openalex.org/C81860439 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5720948576927185 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q251212 |
| concepts[2].display_name | Internet of Things |
| concepts[3].id | https://openalex.org/C162307627 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5603973865509033 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q204833 |
| concepts[3].display_name | Enhanced Data Rates for GSM Evolution |
| concepts[4].id | https://openalex.org/C2778456923 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5517105460166931 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5337692 |
| concepts[4].display_name | Edge computing |
| concepts[5].id | https://openalex.org/C50644808 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5432677268981934 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[5].display_name | Artificial neural network |
| concepts[6].id | https://openalex.org/C110875604 |
| concepts[6].level | 2 |
| concepts[6].score | 0.46193256974220276 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q75 |
| concepts[6].display_name | The Internet |
| concepts[7].id | https://openalex.org/C149635348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.45879220962524414 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q193040 |
| concepts[7].display_name | Embedded system |
| concepts[8].id | https://openalex.org/C138236772 |
| concepts[8].level | 3 |
| concepts[8].score | 0.41349196434020996 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q25098575 |
| concepts[8].display_name | Edge device |
| concepts[9].id | https://openalex.org/C118524514 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3919438123703003 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q173212 |
| concepts[9].display_name | Computer architecture |
| concepts[10].id | https://openalex.org/C31258907 |
| concepts[10].level | 1 |
| concepts[10].score | 0.37922102212905884 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[10].display_name | Computer network |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2948318123817444 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C136764020 |
| concepts[12].level | 1 |
| concepts[12].score | 0.21015682816505432 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[12].display_name | World Wide Web |
| concepts[13].id | https://openalex.org/C111919701 |
| concepts[13].level | 1 |
| concepts[13].score | 0.17524659633636475 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[13].display_name | Operating system |
| concepts[14].id | https://openalex.org/C79974875 |
| concepts[14].level | 2 |
| concepts[14].score | 0.15016981959342957 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q483639 |
| concepts[14].display_name | Cloud computing |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8181208968162537 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/field-programmable-gate-array |
| keywords[1].score | 0.7655495405197144 |
| keywords[1].display_name | Field-programmable gate array |
| keywords[2].id | https://openalex.org/keywords/internet-of-things |
| keywords[2].score | 0.5720948576927185 |
| keywords[2].display_name | Internet of Things |
| keywords[3].id | https://openalex.org/keywords/enhanced-data-rates-for-gsm-evolution |
| keywords[3].score | 0.5603973865509033 |
| keywords[3].display_name | Enhanced Data Rates for GSM Evolution |
| keywords[4].id | https://openalex.org/keywords/edge-computing |
| keywords[4].score | 0.5517105460166931 |
| keywords[4].display_name | Edge computing |
| keywords[5].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[5].score | 0.5432677268981934 |
| keywords[5].display_name | Artificial neural network |
| keywords[6].id | https://openalex.org/keywords/the-internet |
| keywords[6].score | 0.46193256974220276 |
| keywords[6].display_name | The Internet |
| keywords[7].id | https://openalex.org/keywords/embedded-system |
| keywords[7].score | 0.45879220962524414 |
| keywords[7].display_name | Embedded system |
| keywords[8].id | https://openalex.org/keywords/edge-device |
| keywords[8].score | 0.41349196434020996 |
| keywords[8].display_name | Edge device |
| keywords[9].id | https://openalex.org/keywords/computer-architecture |
| keywords[9].score | 0.3919438123703003 |
| keywords[9].display_name | Computer architecture |
| keywords[10].id | https://openalex.org/keywords/computer-network |
| keywords[10].score | 0.37922102212905884 |
| keywords[10].display_name | Computer network |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.2948318123817444 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/world-wide-web |
| keywords[12].score | 0.21015682816505432 |
| keywords[12].display_name | World Wide Web |
| keywords[13].id | https://openalex.org/keywords/operating-system |
| keywords[13].score | 0.17524659633636475 |
| keywords[13].display_name | Operating system |
| keywords[14].id | https://openalex.org/keywords/cloud-computing |
| keywords[14].score | 0.15016981959342957 |
| keywords[14].display_name | Cloud computing |
| language | en |
| locations[0].id | doi:10.1109/access.2025.3592729 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2025.3592729 |
| locations[1].id | pmh:oai:doaj.org/article:13e936ad44cf464d96be294deb33a6a2 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 13, Pp 134041-134056 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/13e936ad44cf464d96be294deb33a6a2 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5072708986 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6119-2099 |
| authorships[0].author.display_name | Nikhil B. Gaikwad |
| authorships[0].countries | DK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I891191580 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electronic Systems, Aalborg Universitet, Frederikskaj 12, Copenhagen, Denmark |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I891191580 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Electronic Systems, Aalborg Universitet, Copenhagen, Denmark |
| authorships[0].institutions[0].id | https://openalex.org/I891191580 |
| authorships[0].institutions[0].ror | https://ror.org/04m5j1k67 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I891191580 |
| authorships[0].institutions[0].country_code | DK |
| authorships[0].institutions[0].display_name | Aalborg University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nikhil B. Gaikwad |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Electronic Systems, Aalborg Universitet, Copenhagen, Denmark, Department of Electronic Systems, Aalborg Universitet, Frederikskaj 12, Copenhagen, Denmark |
| authorships[1].author.id | https://openalex.org/A5008824968 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8365-1092 |
| authorships[1].author.display_name | Smith K. Khare |
| authorships[1].countries | DK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I177969490, https://openalex.org/I184886455 |
| authorships[1].affiliations[0].raw_affiliation_string | Applied Artificial Intelligence and Data Science Unit, The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Campusvej 55, Odense, Denmark |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I177969490, https://openalex.org/I184886455 |
| authorships[1].affiliations[1].raw_affiliation_string | Applied Artificial Intelligence and Data Science Unit, The Maersk Mc-Kinney Møller Institute, University of Southern Denmark, Odense, Denmark |
| authorships[1].institutions[0].id | https://openalex.org/I184886455 |
| authorships[1].institutions[0].ror | https://ror.org/046gbzb64 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I184886455 |
| authorships[1].institutions[0].country_code | DK |
| authorships[1].institutions[0].display_name | Maersk (Denmark) |
| authorships[1].institutions[1].id | https://openalex.org/I177969490 |
| authorships[1].institutions[1].ror | https://ror.org/03yrrjy16 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I177969490 |
| authorships[1].institutions[1].country_code | DK |
| authorships[1].institutions[1].display_name | University of Southern Denmark |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Smith K. Khare |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Applied Artificial Intelligence and Data Science Unit, The Maersk Mc-Kinney Møller Institute, University of Southern Denmark, Odense, Denmark, Applied Artificial Intelligence and Data Science Unit, The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Campusvej 55, Odense, Denmark |
| authorships[2].author.id | https://openalex.org/A5021869833 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1158-3259 |
| authorships[2].author.display_name | Dinesh Mendhe |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I102322142 |
| authorships[2].affiliations[0].raw_affiliation_string | Office of Research Computing, Rutgers University, New Brunswick, NJ, USA |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I102322142 |
| authorships[2].affiliations[1].raw_affiliation_string | Office of Research Computing, Rutgers University, Shrub Oak, New Jersey, USA |
| authorships[2].institutions[0].id | https://openalex.org/I102322142 |
| authorships[2].institutions[0].ror | https://ror.org/05vt9qd57 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I102322142 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Rutgers, The State University of New Jersey |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Dinesh Mendhe |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Office of Research Computing, Rutgers University, New Brunswick, NJ, USA, Office of Research Computing, Rutgers University, Shrub Oak, New Jersey, USA |
| authorships[3].author.id | https://openalex.org/A5027048647 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6863-3002 |
| authorships[3].author.display_name | Hasan Mir |
| authorships[3].countries | AE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I199440890 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Electrical Engineering, American University of Sharjah, Sharjah, United Arab Emirates |
| authorships[3].institutions[0].id | https://openalex.org/I199440890 |
| authorships[3].institutions[0].ror | https://ror.org/001g2fj96 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I199440890 |
| authorships[3].institutions[0].country_code | AE |
| authorships[3].institutions[0].display_name | American University of Sharjah |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hasan Mir |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Electrical Engineering, American University of Sharjah, Sharjah, United Arab Emirates |
| authorships[4].author.id | https://openalex.org/A5067515150 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9441-4508 |
| authorships[4].author.display_name | Sokol Kosta |
| authorships[4].countries | DK |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I891191580 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Electronic Systems, Aalborg Universitet, Frederikskaj 12, Copenhagen, Denmark |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I891191580 |
| authorships[4].affiliations[1].raw_affiliation_string | Department of Electronic Systems, Aalborg Universitet, Copenhagen, Denmark |
| authorships[4].institutions[0].id | https://openalex.org/I891191580 |
| authorships[4].institutions[0].ror | https://ror.org/04m5j1k67 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I891191580 |
| authorships[4].institutions[0].country_code | DK |
| authorships[4].institutions[0].display_name | Aalborg University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Sokol Kosta |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Electronic Systems, Aalborg Universitet, Copenhagen, Denmark, Department of Electronic Systems, Aalborg Universitet, Frederikskaj 12, Copenhagen, Denmark |
| authorships[5].author.id | https://openalex.org/A5074179735 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2689-8552 |
| authorships[5].author.display_name | U. Rajendra Acharya |
| authorships[5].countries | AU |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I185523456 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Mathematics, Physics, and Computing, University of Southern Queensland, Springfield, Australia |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I185523456 |
| authorships[5].affiliations[1].raw_affiliation_string | School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, Queensland, Australia |
| authorships[5].institutions[0].id | https://openalex.org/I185523456 |
| authorships[5].institutions[0].ror | https://ror.org/04sjbnx57 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I185523456 |
| authorships[5].institutions[0].country_code | AU |
| authorships[5].institutions[0].display_name | University of Southern Queensland |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | U. Rajendra Acharya |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, Queensland, Australia, School of Mathematics, Physics, and Computing, University of Southern Queensland, Springfield, Australia |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/access.2025.3592729 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | FPGA SoC Implementation of Adaptive Deep Neural Network-Based Multimodal Edge Intelligence for Internet of Medical Things |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11196 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9965999722480774 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Non-Invasive Vital Sign Monitoring |
| related_works | https://openalex.org/W1967938402, https://openalex.org/W2386041993, https://openalex.org/W1608572506, https://openalex.org/W4322761281, https://openalex.org/W4238233472, https://openalex.org/W3111395152, https://openalex.org/W4313526662, https://openalex.org/W4313463218, https://openalex.org/W3106131444, https://openalex.org/W3216099748 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2025.3592729 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2025.3592729 |
| primary_location.id | doi:10.1109/access.2025.3592729 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2025.3592729 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3206031792, https://openalex.org/W4321188794, https://openalex.org/W4320716789, https://openalex.org/W4283734028, https://openalex.org/W2956871907, https://openalex.org/W3033311084, https://openalex.org/W3110885177, https://openalex.org/W3111148309, https://openalex.org/W3203440990, https://openalex.org/W4311989254, https://openalex.org/W4210652228, https://openalex.org/W3157969512, https://openalex.org/W3036843580, https://openalex.org/W3029176123, https://openalex.org/W3018956023, https://openalex.org/W2978703344, https://openalex.org/W4289536603, https://openalex.org/W3113288818, https://openalex.org/W3172744943, https://openalex.org/W3108964057, https://openalex.org/W2917008732, https://openalex.org/W2962856739, https://openalex.org/W4288065064, https://openalex.org/W4285123589, https://openalex.org/W4291910432, https://openalex.org/W3045042385, https://openalex.org/W4382315162, https://openalex.org/W4378421997, https://openalex.org/W4386472968, https://openalex.org/W4220875313, https://openalex.org/W4313478842, https://openalex.org/W4285157142, https://openalex.org/W3108690123, https://openalex.org/W4224313179, https://openalex.org/W3197959172, https://openalex.org/W3186145174, https://openalex.org/W4281983829, https://openalex.org/W3127717643, https://openalex.org/W2988501141, https://openalex.org/W4210577410, https://openalex.org/W3041090558, https://openalex.org/W2971544482, https://openalex.org/W2343564958, https://openalex.org/W3118424951, https://openalex.org/W2944160990, https://openalex.org/W2898287789, https://openalex.org/W2792142161, https://openalex.org/W2431637923, https://openalex.org/W3004706883, https://openalex.org/W2889779412, https://openalex.org/W4283659382, https://openalex.org/W3155652115, https://openalex.org/W2594116048, https://openalex.org/W2017634428, https://openalex.org/W2042116582, https://openalex.org/W3111513206, https://openalex.org/W2963521811, https://openalex.org/W4311092738, https://openalex.org/W4367321805, https://openalex.org/W4378977296, https://openalex.org/W6910546390, https://openalex.org/W1480910458, https://openalex.org/W2915830951, https://openalex.org/W2727768036, https://openalex.org/W4294643431, https://openalex.org/W3021468941, https://openalex.org/W3004042811, https://openalex.org/W2964179078, https://openalex.org/W2219995598, https://openalex.org/W3202341739, https://openalex.org/W4381827290, https://openalex.org/W3213742958, https://openalex.org/W4385607470, https://openalex.org/W4292794034, https://openalex.org/W2564012277, https://openalex.org/W3105886168, https://openalex.org/W3097855118 |
| referenced_works_count | 77 |
| abstract_inverted_index.a | 50, 62, 167, 187, 234, 241, 245 |
| abstract_inverted_index.IP | 90, 113, 196, 226, 263, 274 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.To | 36 |
| abstract_inverted_index.We | 60, 136 |
| abstract_inverted_index.an | 73, 85 |
| abstract_inverted_index.as | 120 |
| abstract_inverted_index.by | 145 |
| abstract_inverted_index.in | 40, 100, 129, 261 |
| abstract_inverted_index.is | 8 |
| abstract_inverted_index.it | 147 |
| abstract_inverted_index.of | 18, 28, 49, 82, 108, 141, 170, 193, 212, 237, 247, 259 |
| abstract_inverted_index.on | 84, 105, 203, 215 |
| abstract_inverted_index.to | 97, 126, 208, 270, 285 |
| abstract_inverted_index.we | 45 |
| abstract_inverted_index.309 | 238 |
| abstract_inverted_index.680 | 231 |
| abstract_inverted_index.95% | 177 |
| abstract_inverted_index.DNN | 163, 195, 225 |
| abstract_inverted_index.Our | 88, 253 |
| abstract_inverted_index.The | 16, 111, 157, 222 |
| abstract_inverted_index.and | 5, 14, 124, 133, 153, 181, 205, 219, 280, 291 |
| abstract_inverted_index.are | 201 |
| abstract_inverted_index.bit | 213 |
| abstract_inverted_index.for | 10, 26, 172, 175, 178, 183, 240 |
| abstract_inverted_index.has | 165, 276 |
| abstract_inverted_index.ill | 131 |
| abstract_inverted_index.one | 95, 101 |
| abstract_inverted_index.our | 142, 161 |
| abstract_inverted_index.per | 251 |
| abstract_inverted_index.raw | 116 |
| abstract_inverted_index.the | 11, 47, 106, 139, 210, 257, 262 |
| abstract_inverted_index.(IP) | 70 |
| abstract_inverted_index.1.47 | 248 |
| abstract_inverted_index.ECG, | 121, 173 |
| abstract_inverted_index.PPG, | 122, 176 |
| abstract_inverted_index.This | 272 |
| abstract_inverted_index.care | 42 |
| abstract_inverted_index.core | 71, 91, 114, 264, 275 |
| abstract_inverted_index.data | 58, 266 |
| abstract_inverted_index.deep | 64 |
| abstract_inverted_index.edge | 19, 52, 86 |
| abstract_inverted_index.four | 79 |
| abstract_inverted_index.from | 94, 268 |
| abstract_inverted_index.have | 137 |
| abstract_inverted_index.life | 13 |
| abstract_inverted_index.mega | 249 |
| abstract_inverted_index.only | 99 |
| abstract_inverted_index.show | 159 |
| abstract_inverted_index.size | 267 |
| abstract_inverted_index.such | 119 |
| abstract_inverted_index.that | 54, 77, 160, 256 |
| abstract_inverted_index.type | 107 |
| abstract_inverted_index.with | 33, 72, 148, 186, 228, 233, 244 |
| abstract_inverted_index.(DNN) | 67 |
| abstract_inverted_index.91.4% | 174 |
| abstract_inverted_index.98.7% | 182 |
| abstract_inverted_index.99.2% | 171 |
| abstract_inverted_index.Three | 191 |
| abstract_inverted_index.based | 104 |
| abstract_inverted_index.clock | 102 |
| abstract_inverted_index.cores | 197, 227 |
| abstract_inverted_index.goals | 24 |
| abstract_inverted_index.input | 109 |
| abstract_inverted_index.model | 144, 164 |
| abstract_inverted_index.other | 125 |
| abstract_inverted_index.power | 220, 235, 279 |
| abstract_inverted_index.shows | 255 |
| abstract_inverted_index.smoke | 184 |
| abstract_inverted_index.speed | 246 |
| abstract_inverted_index.study | 209 |
| abstract_inverted_index.their | 134, 154 |
| abstract_inverted_index.these | 22 |
| abstract_inverted_index.types | 81 |
| abstract_inverted_index.units | 43 |
| abstract_inverted_index.(ICU), | 44 |
| abstract_inverted_index.(IoMT) | 31 |
| abstract_inverted_index.96.25% | 269 |
| abstract_inverted_index.Things | 30 |
| abstract_inverted_index.assist | 37 |
| abstract_inverted_index.cycle, | 103 |
| abstract_inverted_index.death. | 15 |
| abstract_inverted_index.design | 48 |
| abstract_inverted_index.effect | 211 |
| abstract_inverted_index.models | 152 |
| abstract_inverted_index.neural | 65 |
| abstract_inverted_index.single | 242 |
| abstract_inverted_index.timely | 6 |
| abstract_inverted_index.(8-bit, | 198 |
| abstract_inverted_index.16-bit, | 199 |
| abstract_inverted_index.16-bits | 229 |
| abstract_inverted_index.24-bit) | 200 |
| abstract_inverted_index.98.75%. | 271 |
| abstract_inverted_index.Medical | 29 |
| abstract_inverted_index.another | 98 |
| abstract_inverted_index.develop | 61 |
| abstract_inverted_index.enables | 21 |
| abstract_inverted_index.gateway | 53 |
| abstract_inverted_index.latency | 290 |
| abstract_inverted_index.machine | 150 |
| abstract_inverted_index.medical | 38 |
| abstract_inverted_index.network | 51, 66 |
| abstract_inverted_index.present | 46 |
| abstract_inverted_index.reduces | 265 |
| abstract_inverted_index.require | 230 |
| abstract_inverted_index.results | 158 |
| abstract_inverted_index.samples | 250 |
| abstract_inverted_index.second. | 252 |
| abstract_inverted_index.service | 23 |
| abstract_inverted_index.signals | 118 |
| abstract_inverted_index.without | 288 |
| abstract_inverted_index.Internet | 27 |
| abstract_inverted_index.SoC/FPGA | 204 |
| abstract_inverted_index.accuracy | 169 |
| abstract_inverted_index.accurate | 4 |
| abstract_inverted_index.achieved | 277 |
| abstract_inverted_index.activity | 179 |
| abstract_inverted_index.adaptive | 162, 194, 224 |
| abstract_inverted_index.analysis | 83, 254 |
| abstract_inverted_index.analyzes | 115 |
| abstract_inverted_index.compared | 32, 206, 284 |
| abstract_inverted_index.critical | 9 |
| abstract_inverted_index.discover | 127 |
| abstract_inverted_index.executes | 78 |
| abstract_inverted_index.flexible | 273 |
| abstract_inverted_index.gateway. | 87 |
| abstract_inverted_index.hardware | 75 |
| abstract_inverted_index.learning | 151 |
| abstract_inverted_index.obtained | 166 |
| abstract_inverted_index.patients | 132 |
| abstract_inverted_index.performs | 55 |
| abstract_inverted_index.previous | 155 |
| abstract_inverted_index.property | 69 |
| abstract_inverted_index.proposed | 112 |
| abstract_inverted_index.resource | 217, 281 |
| abstract_inverted_index.software | 168 |
| abstract_inverted_index.switches | 93 |
| abstract_inverted_index.together | 207 |
| abstract_inverted_index.versions | 192 |
| abstract_inverted_index.accuracy, | 216 |
| abstract_inverted_index.adaptable | 74 |
| abstract_inverted_index.anomalies | 128 |
| abstract_inverted_index.benchmark | 149 |
| abstract_inverted_index.comparing | 146 |
| abstract_inverted_index.detection | 185 |
| abstract_inverted_index.developed | 89, 143, 223 |
| abstract_inverted_index.different | 80 |
| abstract_inverted_index.emergence | 17 |
| abstract_inverted_index.emergency | 1 |
| abstract_inverted_index.features. | 110 |
| abstract_inverted_index.five-fold | 188 |
| abstract_inverted_index.inference | 243 |
| abstract_inverted_index.intensive | 41 |
| abstract_inverted_index.personnel | 39 |
| abstract_inverted_index.precision | 214 |
| abstract_inverted_index.real-time | 57 |
| abstract_inverted_index.services, | 3 |
| abstract_inverted_index.strategy. | 190 |
| abstract_inverted_index.validated | 138 |
| abstract_inverted_index.achievable | 25 |
| abstract_inverted_index.adaptively | 92 |
| abstract_inverted_index.analytics. | 59 |
| abstract_inverted_index.critically | 130 |
| abstract_inverted_index.healthcare | 2 |
| abstract_inverted_index.milliwatts | 239 |
| abstract_inverted_index.multimodal | 117 |
| abstract_inverted_index.robustness | 140 |
| abstract_inverted_index.approaches. | 35 |
| abstract_inverted_index.consumption | 236 |
| abstract_inverted_index.implemented | 202 |
| abstract_inverted_index.independent | 286 |
| abstract_inverted_index.nanoseconds | 232 |
| abstract_inverted_index.performance | 283 |
| abstract_inverted_index.significant | 278 |
| abstract_inverted_index.throughput. | 292 |
| abstract_inverted_index.utilization | 282 |
| abstract_inverted_index.architecture | 76, 96 |
| abstract_inverted_index.compromising | 289 |
| abstract_inverted_index.consumption. | 221 |
| abstract_inverted_index.intellectual | 68 |
| abstract_inverted_index.intelligence | 20, 260 |
| abstract_inverted_index.utilization, | 218 |
| abstract_inverted_index.cloud-centric | 34 |
| abstract_inverted_index.surroundings. | 135 |
| abstract_inverted_index.accelerometer, | 123 |
| abstract_inverted_index.implementation | 287 |
| abstract_inverted_index.classification, | 180 |
| abstract_inverted_index.decision-making | 7 |
| abstract_inverted_index.cross-validation | 189 |
| abstract_inverted_index.decentralization | 258 |
| abstract_inverted_index.implementations. | 156 |
| abstract_inverted_index.patient’s | 12 |
| abstract_inverted_index.cloud-configurable | 63 |
| abstract_inverted_index.resource-efficient, | 56 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 4 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.80669097 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |