Fractal Dimension Warning via Microseismic Time–Energy Data During Rock Mass Failure Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/fractalfract9030174
The early warning of disasters such as ground pressure in deep hard rock mines has long constrained the safe and efficient development of mining activities. Based on fractal theory and fractal dimension interpretation, this study constructs a microseismic monitoring system for mining areas, extracting key elements, particularly time and energy elements. Using the box-counting method of fractal theory, the study investigates the fractal dimensions of microseismic time–energy elements, data interpretation, and disaster source early warning. Through parameter analysis, events related to local potential failure are identified and extracted, and disaster characteristics are revealed based on microseismic activity. A time–energy fractal dimension-based analysis method is developed for preliminary fractal analysis and prediction of regional damage. A time–energy-centered early warning model is constructed, narrowing the prediction range to a scale of 10 m. Based on the fractal interpretation of time–energy data, the prediction and early warning of rock mass failure in mining areas are achieved, with the reliability of nested energy warnings ranging between 91.7% and 96.2%. A comprehensive evaluation criterion for fractal dimension values is established, enabling accurate delineation of warning zones and providing scientific decision-making support for mine safety promotion.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/fractalfract9030174
- https://www.mdpi.com/2504-3110/9/3/174/pdf?version=1741872305
- OA Status
- gold
- References
- 26
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408404625
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408404625Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/fractalfract9030174Digital Object Identifier
- Title
-
Fractal Dimension Warning via Microseismic Time–Energy Data During Rock Mass FailureWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-13Full publication date if available
- Authors
-
Congcong Zhao, Shigen Fu, Zhen Wang, Mingbo Chi, Yinghua HuangList of authors in order
- Landing page
-
https://doi.org/10.3390/fractalfract9030174Publisher landing page
- PDF URL
-
https://www.mdpi.com/2504-3110/9/3/174/pdf?version=1741872305Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2504-3110/9/3/174/pdf?version=1741872305Direct OA link when available
- Concepts
-
Microseism, Fractal dimension, Fractal, Geology, Dimension (graph theory), Rock mass classification, Seismology, Warning system, Statistical physics, Computer science, Geotechnical engineering, Mathematics, Physics, Mathematical analysis, Telecommunications, Pure mathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
26Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408404625 |
|---|---|
| doi | https://doi.org/10.3390/fractalfract9030174 |
| ids.doi | https://doi.org/10.3390/fractalfract9030174 |
| ids.openalex | https://openalex.org/W4408404625 |
| fwci | 0.0 |
| type | article |
| title | Fractal Dimension Warning via Microseismic Time–Energy Data During Rock Mass Failure |
| awards[0].id | https://openalex.org/G3080964708 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 52274249 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G8141373585 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 52374139 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| awards[2].id | https://openalex.org/G4512232213 |
| awards[2].funder_id | https://openalex.org/F4320321001 |
| awards[2].display_name | |
| awards[2].funder_award_id | 52334003 |
| awards[2].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 3 |
| biblio.volume | 9 |
| biblio.last_page | 174 |
| biblio.first_page | 174 |
| topics[0].id | https://openalex.org/T13018 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9988999962806702 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Seismology and Earthquake Studies |
| topics[1].id | https://openalex.org/T10161 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9977999925613403 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2211 |
| topics[1].subfield.display_name | Mechanics of Materials |
| topics[1].display_name | Rock Mechanics and Modeling |
| topics[2].id | https://openalex.org/T10271 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.9959999918937683 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1908 |
| topics[2].subfield.display_name | Geophysics |
| topics[2].display_name | Seismic Imaging and Inversion Techniques |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320321543 |
| funders[1].ror | https://ror.org/0426zh255 |
| funders[1].display_name | China Postdoctoral Science Foundation |
| is_xpac | False |
| apc_list.value | 1600 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1732 |
| apc_paid.value | 1600 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1732 |
| concepts[0].id | https://openalex.org/C7266685 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8640405535697937 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1303250 |
| concepts[0].display_name | Microseism |
| concepts[1].id | https://openalex.org/C26546657 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6902005076408386 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1412452 |
| concepts[1].display_name | Fractal dimension |
| concepts[2].id | https://openalex.org/C40636538 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6163527965545654 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q81392 |
| concepts[2].display_name | Fractal |
| concepts[3].id | https://openalex.org/C127313418 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5693838596343994 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[3].display_name | Geology |
| concepts[4].id | https://openalex.org/C33676613 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5328742861747742 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q13415176 |
| concepts[4].display_name | Dimension (graph theory) |
| concepts[5].id | https://openalex.org/C41242791 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4968402683734894 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q17105549 |
| concepts[5].display_name | Rock mass classification |
| concepts[6].id | https://openalex.org/C165205528 |
| concepts[6].level | 1 |
| concepts[6].score | 0.48644232749938965 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q83371 |
| concepts[6].display_name | Seismology |
| concepts[7].id | https://openalex.org/C29825287 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4633166790008545 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1427940 |
| concepts[7].display_name | Warning system |
| concepts[8].id | https://openalex.org/C121864883 |
| concepts[8].level | 1 |
| concepts[8].score | 0.33168160915374756 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[8].display_name | Statistical physics |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.23497223854064941 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C187320778 |
| concepts[10].level | 1 |
| concepts[10].score | 0.2106354832649231 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1349130 |
| concepts[10].display_name | Geotechnical engineering |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.2082025110721588 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.19512158632278442 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C134306372 |
| concepts[13].level | 1 |
| concepts[13].score | 0.11214554309844971 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[13].display_name | Mathematical analysis |
| concepts[14].id | https://openalex.org/C76155785 |
| concepts[14].level | 1 |
| concepts[14].score | 0.08794820308685303 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[14].display_name | Telecommunications |
| concepts[15].id | https://openalex.org/C202444582 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[15].display_name | Pure mathematics |
| keywords[0].id | https://openalex.org/keywords/microseism |
| keywords[0].score | 0.8640405535697937 |
| keywords[0].display_name | Microseism |
| keywords[1].id | https://openalex.org/keywords/fractal-dimension |
| keywords[1].score | 0.6902005076408386 |
| keywords[1].display_name | Fractal dimension |
| keywords[2].id | https://openalex.org/keywords/fractal |
| keywords[2].score | 0.6163527965545654 |
| keywords[2].display_name | Fractal |
| keywords[3].id | https://openalex.org/keywords/geology |
| keywords[3].score | 0.5693838596343994 |
| keywords[3].display_name | Geology |
| keywords[4].id | https://openalex.org/keywords/dimension |
| keywords[4].score | 0.5328742861747742 |
| keywords[4].display_name | Dimension (graph theory) |
| keywords[5].id | https://openalex.org/keywords/rock-mass-classification |
| keywords[5].score | 0.4968402683734894 |
| keywords[5].display_name | Rock mass classification |
| keywords[6].id | https://openalex.org/keywords/seismology |
| keywords[6].score | 0.48644232749938965 |
| keywords[6].display_name | Seismology |
| keywords[7].id | https://openalex.org/keywords/warning-system |
| keywords[7].score | 0.4633166790008545 |
| keywords[7].display_name | Warning system |
| keywords[8].id | https://openalex.org/keywords/statistical-physics |
| keywords[8].score | 0.33168160915374756 |
| keywords[8].display_name | Statistical physics |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.23497223854064941 |
| keywords[9].display_name | Computer science |
| keywords[10].id | https://openalex.org/keywords/geotechnical-engineering |
| keywords[10].score | 0.2106354832649231 |
| keywords[10].display_name | Geotechnical engineering |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.2082025110721588 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/physics |
| keywords[12].score | 0.19512158632278442 |
| keywords[12].display_name | Physics |
| keywords[13].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[13].score | 0.11214554309844971 |
| keywords[13].display_name | Mathematical analysis |
| keywords[14].id | https://openalex.org/keywords/telecommunications |
| keywords[14].score | 0.08794820308685303 |
| keywords[14].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.3390/fractalfract9030174 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210227020 |
| locations[0].source.issn | 2504-3110 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2504-3110 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Fractal and Fractional |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2504-3110/9/3/174/pdf?version=1741872305 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Fractal and Fractional |
| locations[0].landing_page_url | https://doi.org/10.3390/fractalfract9030174 |
| locations[1].id | pmh:oai:doaj.org/article:32463b2193a24658ab2de756cddba6f5 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Fractal and Fractional, Vol 9, Iss 3, p 174 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/32463b2193a24658ab2de756cddba6f5 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100605585 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4474-0687 |
| authorships[0].author.display_name | Congcong Zhao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I92403157 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Resources and Safety Engineering, University of Science and Technology Beijing, Beijing 100083, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I139660479 |
| authorships[0].affiliations[1].raw_affiliation_string | School of Resources and Safety Engineering, Central South University, Changsha 410083, China |
| authorships[0].affiliations[2].institution_ids | https://openalex.org/I4210109779 |
| authorships[0].affiliations[2].raw_affiliation_string | China Academy of Safety Science and Technology, Beijing 100012, China |
| authorships[0].affiliations[3].raw_affiliation_string | Key Laboratory of National Mine Safety Administration for Safety Risk Monitoring and Early Warning in Non-Coal Mines, National Mine Safety Administration, Beijing 100713, China |
| authorships[0].institutions[0].id | https://openalex.org/I139660479 |
| authorships[0].institutions[0].ror | https://ror.org/00f1zfq44 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I139660479 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Central South University |
| authorships[0].institutions[1].id | https://openalex.org/I4210109779 |
| authorships[0].institutions[1].ror | https://ror.org/01pwpsm46 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210109779 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | China Academy of Safety Sciences and Technology |
| authorships[0].institutions[2].id | https://openalex.org/I92403157 |
| authorships[0].institutions[2].ror | https://ror.org/02egmk993 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I92403157 |
| authorships[0].institutions[2].country_code | CN |
| authorships[0].institutions[2].display_name | University of Science and Technology Beijing |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Congcong Zhao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | China Academy of Safety Science and Technology, Beijing 100012, China, Key Laboratory of National Mine Safety Administration for Safety Risk Monitoring and Early Warning in Non-Coal Mines, National Mine Safety Administration, Beijing 100713, China, School of Resources and Safety Engineering, Central South University, Changsha 410083, China, School of Resources and Safety Engineering, University of Science and Technology Beijing, Beijing 100083, China |
| authorships[1].author.id | https://openalex.org/A5050268867 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Shigen Fu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].raw_affiliation_string | Key Laboratory of National Mine Safety Administration for Safety Risk Monitoring and Early Warning in Non-Coal Mines, National Mine Safety Administration, Beijing 100713, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I4210109779 |
| authorships[1].affiliations[1].raw_affiliation_string | China Academy of Safety Science and Technology, Beijing 100012, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210109779 |
| authorships[1].institutions[0].ror | https://ror.org/01pwpsm46 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210109779 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | China Academy of Safety Sciences and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shigen Fu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | China Academy of Safety Science and Technology, Beijing 100012, China, Key Laboratory of National Mine Safety Administration for Safety Risk Monitoring and Early Warning in Non-Coal Mines, National Mine Safety Administration, Beijing 100713, China |
| authorships[2].author.id | https://openalex.org/A5100670065 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7821-2252 |
| authorships[2].author.display_name | Zhen Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I139660479 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Resources and Safety Engineering, Central South University, Changsha 410083, China |
| authorships[2].institutions[0].id | https://openalex.org/I139660479 |
| authorships[2].institutions[0].ror | https://ror.org/00f1zfq44 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I139660479 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Central South University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhen Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Resources and Safety Engineering, Central South University, Changsha 410083, China |
| authorships[3].author.id | https://openalex.org/A5015694668 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7540-7943 |
| authorships[3].author.display_name | Mingbo Chi |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].raw_affiliation_string | Key Laboratory of National Mine Safety Administration for Safety Risk Monitoring and Early Warning in Non-Coal Mines, National Mine Safety Administration, Beijing 100713, China |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I4210109779 |
| authorships[3].affiliations[1].raw_affiliation_string | China Academy of Safety Science and Technology, Beijing 100012, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210109779 |
| authorships[3].institutions[0].ror | https://ror.org/01pwpsm46 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210109779 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | China Academy of Safety Sciences and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Mingbo Chi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | China Academy of Safety Science and Technology, Beijing 100012, China, Key Laboratory of National Mine Safety Administration for Safety Risk Monitoring and Early Warning in Non-Coal Mines, National Mine Safety Administration, Beijing 100713, China |
| authorships[4].author.id | https://openalex.org/A5047103478 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Yinghua Huang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I139660479 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Resources and Safety Engineering, Central South University, Changsha 410083, China |
| authorships[4].institutions[0].id | https://openalex.org/I139660479 |
| authorships[4].institutions[0].ror | https://ror.org/00f1zfq44 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I139660479 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Central South University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yinghua Huang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Resources and Safety Engineering, Central South University, Changsha 410083, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2504-3110/9/3/174/pdf?version=1741872305 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Fractal Dimension Warning via Microseismic Time–Energy Data During Rock Mass Failure |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T13018 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9988999962806702 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Seismology and Earthquake Studies |
| related_works | https://openalex.org/W4200335135, https://openalex.org/W2394117909, https://openalex.org/W2896054214, https://openalex.org/W2355197944, https://openalex.org/W2017118246, https://openalex.org/W2354661593, https://openalex.org/W2382240109, https://openalex.org/W2368475191, https://openalex.org/W2391311021, https://openalex.org/W2389188284 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/fractalfract9030174 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210227020 |
| best_oa_location.source.issn | 2504-3110 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2504-3110 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Fractal and Fractional |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2504-3110/9/3/174/pdf?version=1741872305 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Fractal and Fractional |
| best_oa_location.landing_page_url | https://doi.org/10.3390/fractalfract9030174 |
| primary_location.id | doi:10.3390/fractalfract9030174 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210227020 |
| primary_location.source.issn | 2504-3110 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2504-3110 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Fractal and Fractional |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2504-3110/9/3/174/pdf?version=1741872305 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Fractal and Fractional |
| primary_location.landing_page_url | https://doi.org/10.3390/fractalfract9030174 |
| publication_date | 2025-03-13 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4401889452, https://openalex.org/W4389850265, https://openalex.org/W4394979746, https://openalex.org/W4399095221, https://openalex.org/W4391757284, https://openalex.org/W4396869234, https://openalex.org/W4396596651, https://openalex.org/W4321442589, https://openalex.org/W4320034204, https://openalex.org/W4400776473, https://openalex.org/W6867313577, https://openalex.org/W4379987711, https://openalex.org/W4392956062, https://openalex.org/W4388655864, https://openalex.org/W4205551557, https://openalex.org/W6728166477, https://openalex.org/W4381662784, https://openalex.org/W2078206416, https://openalex.org/W1969324628, https://openalex.org/W2047475129, https://openalex.org/W2914460075, https://openalex.org/W2917282865, https://openalex.org/W6755735122, https://openalex.org/W2980193271, https://openalex.org/W4397032990, https://openalex.org/W2897684977 |
| referenced_works_count | 26 |
| abstract_inverted_index.A | 97, 114, 165 |
| abstract_inverted_index.a | 36, 126 |
| abstract_inverted_index.10 | 129 |
| abstract_inverted_index.as | 6 |
| abstract_inverted_index.in | 9, 148 |
| abstract_inverted_index.is | 103, 119, 173 |
| abstract_inverted_index.m. | 130 |
| abstract_inverted_index.of | 3, 22, 55, 64, 111, 128, 136, 144, 156, 178 |
| abstract_inverted_index.on | 26, 94, 132 |
| abstract_inverted_index.to | 80, 125 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 19, 29, 48, 70, 86, 88, 109, 141, 163, 181 |
| abstract_inverted_index.are | 84, 91, 151 |
| abstract_inverted_index.for | 40, 105, 169, 186 |
| abstract_inverted_index.has | 14 |
| abstract_inverted_index.key | 44 |
| abstract_inverted_index.the | 17, 52, 58, 61, 122, 133, 139, 154 |
| abstract_inverted_index.data | 68 |
| abstract_inverted_index.deep | 10 |
| abstract_inverted_index.hard | 11 |
| abstract_inverted_index.long | 15 |
| abstract_inverted_index.mass | 146 |
| abstract_inverted_index.mine | 187 |
| abstract_inverted_index.rock | 12, 145 |
| abstract_inverted_index.safe | 18 |
| abstract_inverted_index.such | 5 |
| abstract_inverted_index.this | 33 |
| abstract_inverted_index.time | 47 |
| abstract_inverted_index.with | 153 |
| abstract_inverted_index.91.7% | 162 |
| abstract_inverted_index.Based | 25, 131 |
| abstract_inverted_index.Using | 51 |
| abstract_inverted_index.areas | 150 |
| abstract_inverted_index.based | 93 |
| abstract_inverted_index.data, | 138 |
| abstract_inverted_index.early | 1, 73, 116, 142 |
| abstract_inverted_index.local | 81 |
| abstract_inverted_index.mines | 13 |
| abstract_inverted_index.model | 118 |
| abstract_inverted_index.range | 124 |
| abstract_inverted_index.scale | 127 |
| abstract_inverted_index.study | 34, 59 |
| abstract_inverted_index.zones | 180 |
| abstract_inverted_index.96.2%. | 164 |
| abstract_inverted_index.areas, | 42 |
| abstract_inverted_index.energy | 49, 158 |
| abstract_inverted_index.events | 78 |
| abstract_inverted_index.ground | 7 |
| abstract_inverted_index.method | 54, 102 |
| abstract_inverted_index.mining | 23, 41, 149 |
| abstract_inverted_index.nested | 157 |
| abstract_inverted_index.safety | 188 |
| abstract_inverted_index.source | 72 |
| abstract_inverted_index.system | 39 |
| abstract_inverted_index.theory | 28 |
| abstract_inverted_index.values | 172 |
| abstract_inverted_index.Through | 75 |
| abstract_inverted_index.between | 161 |
| abstract_inverted_index.damage. | 113 |
| abstract_inverted_index.failure | 83, 147 |
| abstract_inverted_index.fractal | 27, 30, 56, 62, 99, 107, 134, 170 |
| abstract_inverted_index.ranging | 160 |
| abstract_inverted_index.related | 79 |
| abstract_inverted_index.support | 185 |
| abstract_inverted_index.theory, | 57 |
| abstract_inverted_index.warning | 2, 117, 143, 179 |
| abstract_inverted_index.accurate | 176 |
| abstract_inverted_index.analysis | 101, 108 |
| abstract_inverted_index.disaster | 71, 89 |
| abstract_inverted_index.enabling | 175 |
| abstract_inverted_index.pressure | 8 |
| abstract_inverted_index.regional | 112 |
| abstract_inverted_index.revealed | 92 |
| abstract_inverted_index.warning. | 74 |
| abstract_inverted_index.warnings | 159 |
| abstract_inverted_index.achieved, | 152 |
| abstract_inverted_index.activity. | 96 |
| abstract_inverted_index.analysis, | 77 |
| abstract_inverted_index.criterion | 168 |
| abstract_inverted_index.developed | 104 |
| abstract_inverted_index.dimension | 31, 171 |
| abstract_inverted_index.disasters | 4 |
| abstract_inverted_index.efficient | 20 |
| abstract_inverted_index.elements, | 45, 67 |
| abstract_inverted_index.elements. | 50 |
| abstract_inverted_index.narrowing | 121 |
| abstract_inverted_index.parameter | 76 |
| abstract_inverted_index.potential | 82 |
| abstract_inverted_index.providing | 182 |
| abstract_inverted_index.constructs | 35 |
| abstract_inverted_index.dimensions | 63 |
| abstract_inverted_index.evaluation | 167 |
| abstract_inverted_index.extracted, | 87 |
| abstract_inverted_index.extracting | 43 |
| abstract_inverted_index.identified | 85 |
| abstract_inverted_index.monitoring | 38 |
| abstract_inverted_index.prediction | 110, 123, 140 |
| abstract_inverted_index.promotion. | 189 |
| abstract_inverted_index.scientific | 183 |
| abstract_inverted_index.activities. | 24 |
| abstract_inverted_index.constrained | 16 |
| abstract_inverted_index.delineation | 177 |
| abstract_inverted_index.development | 21 |
| abstract_inverted_index.preliminary | 106 |
| abstract_inverted_index.reliability | 155 |
| abstract_inverted_index.box-counting | 53 |
| abstract_inverted_index.constructed, | 120 |
| abstract_inverted_index.established, | 174 |
| abstract_inverted_index.investigates | 60 |
| abstract_inverted_index.microseismic | 37, 65, 95 |
| abstract_inverted_index.particularly | 46 |
| abstract_inverted_index.comprehensive | 166 |
| abstract_inverted_index.time–energy | 66, 98, 137 |
| abstract_inverted_index.interpretation | 135 |
| abstract_inverted_index.characteristics | 90 |
| abstract_inverted_index.decision-making | 184 |
| abstract_inverted_index.dimension-based | 100 |
| abstract_inverted_index.interpretation, | 32, 69 |
| abstract_inverted_index.time–energy-centered | 115 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.03006514 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |