Fractal Weyl bounds and Hecke triangle groups Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.3934/era.2019.26.003
Let $Γ_{w}$ be a non-cofinite Hecke triangle group with cusp width $w>2$ and let $\varrho\colonΓ_w\to U(V)$ be a finite-dimensional unitary representation of $Γ_w$. In this note we announce a new fractal upper bound for the Selberg zeta function of $Γ_{w}$ twisted by $\varrho$. In strips parallel to the imaginary axis and bounded away from the real axis, the Selberg zeta function is bounded by $\exp\left( C_{\varepsilon} \vert s\vert^{δ+ \varepsilon} \right)$, where $δ= δ_{w}$ denotes the Hausdorff dimension of the limit set of $Γ_{w}$. This bound implies fractal Weyl bounds on the resonances of the Laplacian for all geometrically finite surfaces $X=\widetildeΓ\backslash\mathbb{H}$ where $\widetildeΓ$ is a finite index, torsion-free subgroup of $Γ_w$.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.3934/era.2019.26.003
- OA Status
- diamond
- Cited By
- 1
- References
- 19
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2897123250
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2897123250Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3934/era.2019.26.003Digital Object Identifier
- Title
-
Fractal Weyl bounds and Hecke triangle groupsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-01-01Full publication date if available
- Authors
-
Frédéric Naud, Anke Pohl, Louis SoaresList of authors in order
- Landing page
-
https://doi.org/10.3934/era.2019.26.003Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3934/era.2019.26.003Direct OA link when available
- Concepts
-
Mathematics, Combinatorics, Bounded function, Hausdorff dimension, Exponent, Cusp (singularity), Upper and lower bounds, Cusp form, Mathematical analysis, Geometry, Philosophy, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 1Per-year citation counts (last 5 years)
- References (count)
-
19Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2897123250 |
|---|---|
| doi | https://doi.org/10.3934/era.2019.26.003 |
| ids.doi | https://doi.org/10.3934/era.2019.26.003 |
| ids.mag | 2897123250 |
| ids.openalex | https://openalex.org/W2897123250 |
| fwci | 0.3742441 |
| type | preprint |
| title | Fractal Weyl bounds and Hecke triangle groups |
| biblio.issue | 0 |
| biblio.volume | 26 |
| biblio.last_page | 35 |
| biblio.first_page | 24 |
| topics[0].id | https://openalex.org/T10588 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2610 |
| topics[0].subfield.display_name | Mathematical Physics |
| topics[0].display_name | Mathematical Dynamics and Fractals |
| topics[1].id | https://openalex.org/T10948 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9994999766349792 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2607 |
| topics[1].subfield.display_name | Discrete Mathematics and Combinatorics |
| topics[1].display_name | Advanced Combinatorial Mathematics |
| topics[2].id | https://openalex.org/T11428 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9991000294685364 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2602 |
| topics[2].subfield.display_name | Algebra and Number Theory |
| topics[2].display_name | Advanced Mathematical Identities |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C33923547 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7252035140991211 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[0].display_name | Mathematics |
| concepts[1].id | https://openalex.org/C114614502 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6285098195075989 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[1].display_name | Combinatorics |
| concepts[2].id | https://openalex.org/C34388435 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6255821585655212 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2267362 |
| concepts[2].display_name | Bounded function |
| concepts[3].id | https://openalex.org/C194198291 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5521390438079834 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q565186 |
| concepts[3].display_name | Hausdorff dimension |
| concepts[4].id | https://openalex.org/C2780388253 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4827212989330292 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5421508 |
| concepts[4].display_name | Exponent |
| concepts[5].id | https://openalex.org/C2778400075 |
| concepts[5].level | 2 |
| concepts[5].score | 0.46951884031295776 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q655275 |
| concepts[5].display_name | Cusp (singularity) |
| concepts[6].id | https://openalex.org/C77553402 |
| concepts[6].level | 2 |
| concepts[6].score | 0.456562876701355 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q13222579 |
| concepts[6].display_name | Upper and lower bounds |
| concepts[7].id | https://openalex.org/C191877429 |
| concepts[7].level | 3 |
| concepts[7].score | 0.45583251118659973 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2400580 |
| concepts[7].display_name | Cusp form |
| concepts[8].id | https://openalex.org/C134306372 |
| concepts[8].level | 1 |
| concepts[8].score | 0.22470039129257202 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[8].display_name | Mathematical analysis |
| concepts[9].id | https://openalex.org/C2524010 |
| concepts[9].level | 1 |
| concepts[9].score | 0.17803865671157837 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[9].display_name | Geometry |
| concepts[10].id | https://openalex.org/C138885662 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[10].display_name | Philosophy |
| concepts[11].id | https://openalex.org/C41895202 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[11].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/mathematics |
| keywords[0].score | 0.7252035140991211 |
| keywords[0].display_name | Mathematics |
| keywords[1].id | https://openalex.org/keywords/combinatorics |
| keywords[1].score | 0.6285098195075989 |
| keywords[1].display_name | Combinatorics |
| keywords[2].id | https://openalex.org/keywords/bounded-function |
| keywords[2].score | 0.6255821585655212 |
| keywords[2].display_name | Bounded function |
| keywords[3].id | https://openalex.org/keywords/hausdorff-dimension |
| keywords[3].score | 0.5521390438079834 |
| keywords[3].display_name | Hausdorff dimension |
| keywords[4].id | https://openalex.org/keywords/exponent |
| keywords[4].score | 0.4827212989330292 |
| keywords[4].display_name | Exponent |
| keywords[5].id | https://openalex.org/keywords/cusp |
| keywords[5].score | 0.46951884031295776 |
| keywords[5].display_name | Cusp (singularity) |
| keywords[6].id | https://openalex.org/keywords/upper-and-lower-bounds |
| keywords[6].score | 0.456562876701355 |
| keywords[6].display_name | Upper and lower bounds |
| keywords[7].id | https://openalex.org/keywords/cusp-form |
| keywords[7].score | 0.45583251118659973 |
| keywords[7].display_name | Cusp form |
| keywords[8].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[8].score | 0.22470039129257202 |
| keywords[8].display_name | Mathematical analysis |
| keywords[9].id | https://openalex.org/keywords/geometry |
| keywords[9].score | 0.17803865671157837 |
| keywords[9].display_name | Geometry |
| language | en |
| locations[0].id | doi:10.3934/era.2019.26.003 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S118659917 |
| locations[0].source.issn | 1935-9179 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1935-9179 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Electronic Research Announcements |
| locations[0].source.host_organization | https://openalex.org/P4310315844 |
| locations[0].source.host_organization_name | American Institute of Mathematical Sciences |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315844 |
| locations[0].source.host_organization_lineage_names | American Institute of Mathematical Sciences |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Electronic Research Announcements |
| locations[0].landing_page_url | https://doi.org/10.3934/era.2019.26.003 |
| locations[1].id | pmh:oai:arXiv.org:1810.04489 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/1810.04489 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/1810.04489 |
| locations[2].id | mag:2897123250 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | arXiv (Cornell University) |
| locations[2].landing_page_url | https://arxiv.org/pdf/1810.04489.pdf |
| locations[3].id | doi:10.48550/arxiv.1810.04489 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400194 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | arXiv (Cornell University) |
| locations[3].source.host_organization | https://openalex.org/I205783295 |
| locations[3].source.host_organization_name | Cornell University |
| locations[3].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://doi.org/10.48550/arxiv.1810.04489 |
| indexed_in | arxiv, crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5080118066 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Frédéric Naud |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Frederic Naud |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5038241955 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3000-4523 |
| authorships[1].author.display_name | Anke Pohl |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Anke Pohl |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5021102532 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3653-8545 |
| authorships[2].author.display_name | Louis Soares |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Louis Soares |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3934/era.2019.26.003 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Fractal Weyl bounds and Hecke triangle groups |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10588 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2610 |
| primary_topic.subfield.display_name | Mathematical Physics |
| primary_topic.display_name | Mathematical Dynamics and Fractals |
| related_works | https://openalex.org/W3026366099, https://openalex.org/W2051362423, https://openalex.org/W2197036353, https://openalex.org/W2018714775, https://openalex.org/W2061575847, https://openalex.org/W2063012274, https://openalex.org/W2625085298, https://openalex.org/W2783071515, https://openalex.org/W2022843898, https://openalex.org/W2222917884, https://openalex.org/W2902680293, https://openalex.org/W3201120893, https://openalex.org/W3098006925, https://openalex.org/W2507864292, https://openalex.org/W3151036451, https://openalex.org/W2963233630, https://openalex.org/W2554804474, https://openalex.org/W2925278810, https://openalex.org/W2963609165, https://openalex.org/W2974270313 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3934/era.2019.26.003 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S118659917 |
| best_oa_location.source.issn | 1935-9179 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1935-9179 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Electronic Research Announcements |
| best_oa_location.source.host_organization | https://openalex.org/P4310315844 |
| best_oa_location.source.host_organization_name | American Institute of Mathematical Sciences |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315844 |
| best_oa_location.source.host_organization_lineage_names | American Institute of Mathematical Sciences |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Electronic Research Announcements |
| best_oa_location.landing_page_url | https://doi.org/10.3934/era.2019.26.003 |
| primary_location.id | doi:10.3934/era.2019.26.003 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S118659917 |
| primary_location.source.issn | 1935-9179 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1935-9179 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Electronic Research Announcements |
| primary_location.source.host_organization | https://openalex.org/P4310315844 |
| primary_location.source.host_organization_name | American Institute of Mathematical Sciences |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315844 |
| primary_location.source.host_organization_lineage_names | American Institute of Mathematical Sciences |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Electronic Research Announcements |
| primary_location.landing_page_url | https://doi.org/10.3934/era.2019.26.003 |
| publication_date | 2019-01-01 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2592207131, https://openalex.org/W1988724987, https://openalex.org/W2037706968, https://openalex.org/W2168651023, https://openalex.org/W3103966093, https://openalex.org/W2261156454, https://openalex.org/W1993525005, https://openalex.org/W1998935705, https://openalex.org/W2008439130, https://openalex.org/W1906752274, https://openalex.org/W2042968368, https://openalex.org/W2010859410, https://openalex.org/W1967936406, https://openalex.org/W2042940983, https://openalex.org/W1992023107, https://openalex.org/W2051199769, https://openalex.org/W2766890717, https://openalex.org/W2091015311, https://openalex.org/W2750698368 |
| referenced_works_count | 19 |
| abstract_inverted_index.a | 3, 17, 28, 104 |
| abstract_inverted_index.In | 23, 43 |
| abstract_inverted_index.be | 2, 16 |
| abstract_inverted_index.by | 41, 63 |
| abstract_inverted_index.is | 61, 103 |
| abstract_inverted_index.of | 21, 38, 77, 81, 92, 109 |
| abstract_inverted_index.on | 89 |
| abstract_inverted_index.to | 46 |
| abstract_inverted_index.we | 26 |
| abstract_inverted_index.Let | 0 |
| abstract_inverted_index.all | 96 |
| abstract_inverted_index.and | 12, 50 |
| abstract_inverted_index.for | 33, 95 |
| abstract_inverted_index.let | 13 |
| abstract_inverted_index.new | 29 |
| abstract_inverted_index.set | 80 |
| abstract_inverted_index.the | 34, 47, 54, 57, 74, 78, 90, 93 |
| abstract_inverted_index.$δ= | 71 |
| abstract_inverted_index.This | 83 |
| abstract_inverted_index.Weyl | 87 |
| abstract_inverted_index.away | 52 |
| abstract_inverted_index.axis | 49 |
| abstract_inverted_index.cusp | 9 |
| abstract_inverted_index.from | 53 |
| abstract_inverted_index.note | 25 |
| abstract_inverted_index.real | 55 |
| abstract_inverted_index.this | 24 |
| abstract_inverted_index.with | 8 |
| abstract_inverted_index.zeta | 36, 59 |
| abstract_inverted_index.Hecke | 5 |
| abstract_inverted_index.U(V)$ | 15 |
| abstract_inverted_index.\vert | 66 |
| abstract_inverted_index.axis, | 56 |
| abstract_inverted_index.bound | 32, 84 |
| abstract_inverted_index.group | 7 |
| abstract_inverted_index.limit | 79 |
| abstract_inverted_index.upper | 31 |
| abstract_inverted_index.where | 70, 101 |
| abstract_inverted_index.width | 10 |
| abstract_inverted_index.bounds | 88 |
| abstract_inverted_index.finite | 98, 105 |
| abstract_inverted_index.index, | 106 |
| abstract_inverted_index.strips | 44 |
| abstract_inverted_index.$Γ_w$. | 22, 110 |
| abstract_inverted_index.Selberg | 35, 58 |
| abstract_inverted_index.bounded | 51, 62 |
| abstract_inverted_index.denotes | 73 |
| abstract_inverted_index.fractal | 30, 86 |
| abstract_inverted_index.implies | 85 |
| abstract_inverted_index.twisted | 40 |
| abstract_inverted_index.unitary | 19 |
| abstract_inverted_index.δ_{w}$ | 72 |
| abstract_inverted_index.$w>2$ | 11 |
| abstract_inverted_index.$Γ_{w}$ | 1, 39 |
| abstract_inverted_index.announce | 27 |
| abstract_inverted_index.function | 37, 60 |
| abstract_inverted_index.parallel | 45 |
| abstract_inverted_index.subgroup | 108 |
| abstract_inverted_index.surfaces | 99 |
| abstract_inverted_index.triangle | 6 |
| abstract_inverted_index.$Γ_{w}$. | 82 |
| abstract_inverted_index.Hausdorff | 75 |
| abstract_inverted_index.Laplacian | 94 |
| abstract_inverted_index.\right)$, | 69 |
| abstract_inverted_index.dimension | 76 |
| abstract_inverted_index.imaginary | 48 |
| abstract_inverted_index.$\varrho$. | 42 |
| abstract_inverted_index.resonances | 91 |
| abstract_inverted_index.$\exp\left( | 64 |
| abstract_inverted_index.s\vert^{δ+ | 67 |
| abstract_inverted_index.\varepsilon} | 68 |
| abstract_inverted_index.non-cofinite | 4 |
| abstract_inverted_index.torsion-free | 107 |
| abstract_inverted_index.geometrically | 97 |
| abstract_inverted_index.$\widetildeΓ$ | 102 |
| abstract_inverted_index.representation | 20 |
| abstract_inverted_index.C_{\varepsilon} | 65 |
| abstract_inverted_index.finite-dimensional | 18 |
| abstract_inverted_index.$\varrho\colonΓ_w\to | 14 |
| abstract_inverted_index.$X=\widetildeΓ\backslash\mathbb{H}$ | 100 |
| cited_by_percentile_year.max | 93 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.55370459 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |