Fractional dynamics foster deep learning of COPD stage prediction Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2303.07537
Chronic obstructive pulmonary disease (COPD) is one of the leading causes of death worldwide. Current COPD diagnosis (i.e., spirometry) could be unreliable because the test depends on an adequate effort from the tester and testee. Moreover, the early diagnosis of COPD is challenging. We address COPD detection by constructing two novel physiological signals datasets (4432 records from 54 patients in the WestRo COPD dataset and 13824 medical records from 534 patients in the WestRo Porti COPD dataset). The authors demonstrate their complex coupled fractal dynamical characteristics and perform a fractional-order dynamics deep learning analysis to diagnose COPD. The authors found that the fractional-order dynamical modeling can extract distinguishing signatures from the physiological signals across patients with all COPD stages from stage 0 (healthy) to stage 4 (very severe). They use the fractional signatures to develop and train a deep neural network that predicts COPD stages based on the input features (such as thorax breathing effort, respiratory rate, or oxygen saturation). The authors show that the fractional dynamic deep learning model (FDDLM) achieves a COPD prediction accuracy of 98.66% and can serve as a robust alternative to spirometry. The FDDLM also has high accuracy when validated on a dataset with different physiological signals.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2303.07537
- https://arxiv.org/pdf/2303.07537
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4327486487
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4327486487Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2303.07537Digital Object Identifier
- Title
-
Fractional dynamics foster deep learning of COPD stage predictionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-03-13Full publication date if available
- Authors
-
Chenzhong Yin, Mihai Udrescu, Gaurav Gupta, Mingxi Cheng, Andrei Lihu, Lucreţia Udrescu, Paul Bogdan, David M. Mannino, Ştefan MihăicuţăList of authors in order
- Landing page
-
https://arxiv.org/abs/2303.07537Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2303.07537Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2303.07537Direct OA link when available
- Concepts
-
COPD, Spirometry, Medicine, Artificial intelligence, Computer science, Deep learning, Machine learning, Physical therapy, Internal medicine, AsthmaTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4327486487 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2303.07537 |
| ids.doi | https://doi.org/10.48550/arxiv.2303.07537 |
| ids.openalex | https://openalex.org/W4327486487 |
| fwci | |
| type | preprint |
| title | Fractional dynamics foster deep learning of COPD stage prediction |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10143 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9929999709129333 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2740 |
| topics[0].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[0].display_name | Chronic Obstructive Pulmonary Disease (COPD) Research |
| topics[1].id | https://openalex.org/T11490 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.929099977016449 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2305 |
| topics[1].subfield.display_name | Environmental Engineering |
| topics[1].display_name | Hydrological Forecasting Using AI |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776780178 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8978832960128784 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q199804 |
| concepts[0].display_name | COPD |
| concepts[1].id | https://openalex.org/C2780333948 |
| concepts[1].level | 3 |
| concepts[1].score | 0.749066948890686 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q653305 |
| concepts[1].display_name | Spirometry |
| concepts[2].id | https://openalex.org/C71924100 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5295009613037109 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[2].display_name | Medicine |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.47093692421913147 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.46155428886413574 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C108583219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4532124698162079 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep learning |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3689097762107849 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C1862650 |
| concepts[7].level | 1 |
| concepts[7].score | 0.33866363763809204 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q186005 |
| concepts[7].display_name | Physical therapy |
| concepts[8].id | https://openalex.org/C126322002 |
| concepts[8].level | 1 |
| concepts[8].score | 0.2884344160556793 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[8].display_name | Internal medicine |
| concepts[9].id | https://openalex.org/C2776042228 |
| concepts[9].level | 2 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q35869 |
| concepts[9].display_name | Asthma |
| keywords[0].id | https://openalex.org/keywords/copd |
| keywords[0].score | 0.8978832960128784 |
| keywords[0].display_name | COPD |
| keywords[1].id | https://openalex.org/keywords/spirometry |
| keywords[1].score | 0.749066948890686 |
| keywords[1].display_name | Spirometry |
| keywords[2].id | https://openalex.org/keywords/medicine |
| keywords[2].score | 0.5295009613037109 |
| keywords[2].display_name | Medicine |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.47093692421913147 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.46155428886413574 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/deep-learning |
| keywords[5].score | 0.4532124698162079 |
| keywords[5].display_name | Deep learning |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.3689097762107849 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/physical-therapy |
| keywords[7].score | 0.33866363763809204 |
| keywords[7].display_name | Physical therapy |
| keywords[8].id | https://openalex.org/keywords/internal-medicine |
| keywords[8].score | 0.2884344160556793 |
| keywords[8].display_name | Internal medicine |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2303.07537 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2303.07537 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2303.07537 |
| locations[1].id | doi:10.48550/arxiv.2303.07537 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2303.07537 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5037487522 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6411-7441 |
| authorships[0].author.display_name | Chenzhong Yin |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yin, Chenzhong |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5061592063 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7607-9240 |
| authorships[1].author.display_name | Mihai Udrescu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Udrescu, Mihai |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100690498 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7941-0229 |
| authorships[2].author.display_name | Gaurav Gupta |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Gupta, Gaurav |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5057367919 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8070-6665 |
| authorships[3].author.display_name | Mingxi Cheng |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Cheng, Mingxi |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5023120837 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2316-3991 |
| authorships[4].author.display_name | Andrei Lihu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Lihu, Andrei |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5061279445 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3084-6301 |
| authorships[5].author.display_name | Lucreţia Udrescu |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Udrescu, Lucretia |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5105925385 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-2118-0816 |
| authorships[6].author.display_name | Paul Bogdan |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Bogdan, Paul |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5085440448 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-3646-7828 |
| authorships[7].author.display_name | David M. Mannino |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Mannino, David M |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5015100390 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-8897-8342 |
| authorships[8].author.display_name | Ştefan Mihăicuţă |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Mihaicuta, Stefan |
| authorships[8].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2303.07537 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Fractional dynamics foster deep learning of COPD stage prediction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10143 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9929999709129333 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2740 |
| primary_topic.subfield.display_name | Pulmonary and Respiratory Medicine |
| primary_topic.display_name | Chronic Obstructive Pulmonary Disease (COPD) Research |
| related_works | https://openalex.org/W2624812451, https://openalex.org/W3146691973, https://openalex.org/W2077427688, https://openalex.org/W2460301894, https://openalex.org/W2319967452, https://openalex.org/W3021010435, https://openalex.org/W3142286882, https://openalex.org/W2092578503, https://openalex.org/W2043525715, https://openalex.org/W4380075502 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2303.07537 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2303.07537 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2303.07537 |
| primary_location.id | pmh:oai:arXiv.org:2303.07537 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2303.07537 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2303.07537 |
| publication_date | 2023-03-13 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.0 | 121 |
| abstract_inverted_index.4 | 125 |
| abstract_inverted_index.a | 88, 137, 172, 182, 196 |
| abstract_inverted_index.54 | 57 |
| abstract_inverted_index.We | 43 |
| abstract_inverted_index.an | 27 |
| abstract_inverted_index.as | 151, 181 |
| abstract_inverted_index.be | 20 |
| abstract_inverted_index.by | 47 |
| abstract_inverted_index.in | 59, 71 |
| abstract_inverted_index.is | 5, 41 |
| abstract_inverted_index.of | 7, 11, 39, 176 |
| abstract_inverted_index.on | 26, 146, 195 |
| abstract_inverted_index.or | 157 |
| abstract_inverted_index.to | 94, 123, 133, 185 |
| abstract_inverted_index.534 | 69 |
| abstract_inverted_index.The | 77, 97, 160, 187 |
| abstract_inverted_index.all | 116 |
| abstract_inverted_index.and | 33, 64, 86, 135, 178 |
| abstract_inverted_index.can | 105, 179 |
| abstract_inverted_index.has | 190 |
| abstract_inverted_index.one | 6 |
| abstract_inverted_index.the | 8, 23, 31, 36, 60, 72, 101, 110, 130, 147, 164 |
| abstract_inverted_index.two | 49 |
| abstract_inverted_index.use | 129 |
| abstract_inverted_index.COPD | 15, 40, 45, 62, 75, 117, 143, 173 |
| abstract_inverted_index.They | 128 |
| abstract_inverted_index.also | 189 |
| abstract_inverted_index.deep | 91, 138, 167 |
| abstract_inverted_index.from | 30, 56, 68, 109, 119 |
| abstract_inverted_index.high | 191 |
| abstract_inverted_index.show | 162 |
| abstract_inverted_index.test | 24 |
| abstract_inverted_index.that | 100, 141, 163 |
| abstract_inverted_index.when | 193 |
| abstract_inverted_index.with | 115, 198 |
| abstract_inverted_index.(4432 | 54 |
| abstract_inverted_index.(such | 150 |
| abstract_inverted_index.(very | 126 |
| abstract_inverted_index.13824 | 65 |
| abstract_inverted_index.COPD. | 96 |
| abstract_inverted_index.FDDLM | 188 |
| abstract_inverted_index.Porti | 74 |
| abstract_inverted_index.based | 145 |
| abstract_inverted_index.could | 19 |
| abstract_inverted_index.death | 12 |
| abstract_inverted_index.early | 37 |
| abstract_inverted_index.found | 99 |
| abstract_inverted_index.input | 148 |
| abstract_inverted_index.model | 169 |
| abstract_inverted_index.novel | 50 |
| abstract_inverted_index.rate, | 156 |
| abstract_inverted_index.serve | 180 |
| abstract_inverted_index.stage | 120, 124 |
| abstract_inverted_index.their | 80 |
| abstract_inverted_index.train | 136 |
| abstract_inverted_index.(COPD) | 4 |
| abstract_inverted_index.(i.e., | 17 |
| abstract_inverted_index.98.66% | 177 |
| abstract_inverted_index.WestRo | 61, 73 |
| abstract_inverted_index.across | 113 |
| abstract_inverted_index.causes | 10 |
| abstract_inverted_index.effort | 29 |
| abstract_inverted_index.neural | 139 |
| abstract_inverted_index.oxygen | 158 |
| abstract_inverted_index.robust | 183 |
| abstract_inverted_index.stages | 118, 144 |
| abstract_inverted_index.tester | 32 |
| abstract_inverted_index.thorax | 152 |
| abstract_inverted_index.(FDDLM) | 170 |
| abstract_inverted_index.Chronic | 0 |
| abstract_inverted_index.Current | 14 |
| abstract_inverted_index.address | 44 |
| abstract_inverted_index.authors | 78, 98, 161 |
| abstract_inverted_index.because | 22 |
| abstract_inverted_index.complex | 81 |
| abstract_inverted_index.coupled | 82 |
| abstract_inverted_index.dataset | 63, 197 |
| abstract_inverted_index.depends | 25 |
| abstract_inverted_index.develop | 134 |
| abstract_inverted_index.disease | 3 |
| abstract_inverted_index.dynamic | 166 |
| abstract_inverted_index.effort, | 154 |
| abstract_inverted_index.extract | 106 |
| abstract_inverted_index.fractal | 83 |
| abstract_inverted_index.leading | 9 |
| abstract_inverted_index.medical | 66 |
| abstract_inverted_index.network | 140 |
| abstract_inverted_index.perform | 87 |
| abstract_inverted_index.records | 55, 67 |
| abstract_inverted_index.signals | 52, 112 |
| abstract_inverted_index.testee. | 34 |
| abstract_inverted_index.accuracy | 175, 192 |
| abstract_inverted_index.achieves | 171 |
| abstract_inverted_index.adequate | 28 |
| abstract_inverted_index.analysis | 93 |
| abstract_inverted_index.datasets | 53 |
| abstract_inverted_index.diagnose | 95 |
| abstract_inverted_index.dynamics | 90 |
| abstract_inverted_index.features | 149 |
| abstract_inverted_index.learning | 92, 168 |
| abstract_inverted_index.modeling | 104 |
| abstract_inverted_index.patients | 58, 70, 114 |
| abstract_inverted_index.predicts | 142 |
| abstract_inverted_index.severe). | 127 |
| abstract_inverted_index.signals. | 201 |
| abstract_inverted_index.(healthy) | 122 |
| abstract_inverted_index.Moreover, | 35 |
| abstract_inverted_index.breathing | 153 |
| abstract_inverted_index.dataset). | 76 |
| abstract_inverted_index.detection | 46 |
| abstract_inverted_index.diagnosis | 16, 38 |
| abstract_inverted_index.different | 199 |
| abstract_inverted_index.dynamical | 84, 103 |
| abstract_inverted_index.pulmonary | 2 |
| abstract_inverted_index.validated | 194 |
| abstract_inverted_index.fractional | 131, 165 |
| abstract_inverted_index.prediction | 174 |
| abstract_inverted_index.signatures | 108, 132 |
| abstract_inverted_index.unreliable | 21 |
| abstract_inverted_index.worldwide. | 13 |
| abstract_inverted_index.alternative | 184 |
| abstract_inverted_index.demonstrate | 79 |
| abstract_inverted_index.obstructive | 1 |
| abstract_inverted_index.respiratory | 155 |
| abstract_inverted_index.spirometry) | 18 |
| abstract_inverted_index.spirometry. | 186 |
| abstract_inverted_index.challenging. | 42 |
| abstract_inverted_index.constructing | 48 |
| abstract_inverted_index.saturation). | 159 |
| abstract_inverted_index.physiological | 51, 111, 200 |
| abstract_inverted_index.distinguishing | 107 |
| abstract_inverted_index.characteristics | 85 |
| abstract_inverted_index.fractional-order | 89, 102 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 9 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.8399999737739563 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile |