Framework for Error Detection & its Localization in Sensor Data Stream for reliable big sensor data analytics using Apache Spark Streaming Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1016/j.procs.2020.03.286
Internet of Things (IoT) is one of the big sources of Big Sensor data in which collected sensor readings often polluted due to corruption and losses of the sensor readings. In Big Sensor data analytics, fast and efficient detection of error and its localization is a challenging research issue. Most of the existing solutions for the error detection and localization in sensor data use offline techniques for detecting errors. In this paper, we propose a novel framework for online error detection and its localization which uses an online scheme for detecting and localizing errors in sensor data using latest big data processing tools such as Apache Spark streaming. Performance evaluation of the proposed framework is done using two different datasets such as real-time air quality dataset of the Raipur city and Intel sensor dataset in terms of false positive.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.procs.2020.03.286
- OA Status
- diamond
- Cited By
- 10
- References
- 19
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3017025919
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3017025919Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.procs.2020.03.286Digital Object Identifier
- Title
-
Framework for Error Detection & its Localization in Sensor Data Stream for reliable big sensor data analytics using Apache Spark StreamingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-01Full publication date if available
- Authors
-
Govind P. Gupta, Jahanvi KhedwalList of authors in order
- Landing page
-
https://doi.org/10.1016/j.procs.2020.03.286Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.procs.2020.03.286Direct OA link when available
- Concepts
-
SPARK (programming language), Computer science, Big data, Analytics, Real-time computing, Anomaly detection, Wireless sensor network, Stream processing, Scheme (mathematics), Data mining, Internet of Things, Embedded system, Distributed computing, Operating system, Mathematics, Programming language, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
10Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 3, 2022: 5, 2021: 2Per-year citation counts (last 5 years)
- References (count)
-
19Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3017025919 |
|---|---|
| doi | https://doi.org/10.1016/j.procs.2020.03.286 |
| ids.doi | https://doi.org/10.1016/j.procs.2020.03.286 |
| ids.mag | 3017025919 |
| ids.openalex | https://openalex.org/W3017025919 |
| fwci | 1.46859549 |
| type | article |
| title | Framework for Error Detection & its Localization in Sensor Data Stream for reliable big sensor data analytics using Apache Spark Streaming |
| biblio.issue | |
| biblio.volume | 167 |
| biblio.last_page | 2342 |
| biblio.first_page | 2337 |
| topics[0].id | https://openalex.org/T12761 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9965000152587891 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Data Stream Mining Techniques |
| topics[1].id | https://openalex.org/T12120 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9958000183105469 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2305 |
| topics[1].subfield.display_name | Environmental Engineering |
| topics[1].display_name | Air Quality Monitoring and Forecasting |
| topics[2].id | https://openalex.org/T10080 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9937999844551086 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Energy Efficient Wireless Sensor Networks |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2781215313 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8904483318328857 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3493345 |
| concepts[0].display_name | SPARK (programming language) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.8730673789978027 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C75684735 |
| concepts[2].level | 2 |
| concepts[2].score | 0.8315119743347168 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q858810 |
| concepts[2].display_name | Big data |
| concepts[3].id | https://openalex.org/C79158427 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6143892407417297 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q485396 |
| concepts[3].display_name | Analytics |
| concepts[4].id | https://openalex.org/C79403827 |
| concepts[4].level | 1 |
| concepts[4].score | 0.550732433795929 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[4].display_name | Real-time computing |
| concepts[5].id | https://openalex.org/C739882 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5338322520256042 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3560506 |
| concepts[5].display_name | Anomaly detection |
| concepts[6].id | https://openalex.org/C24590314 |
| concepts[6].level | 2 |
| concepts[6].score | 0.49767163395881653 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q336038 |
| concepts[6].display_name | Wireless sensor network |
| concepts[7].id | https://openalex.org/C107027933 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4808284044265747 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2006448 |
| concepts[7].display_name | Stream processing |
| concepts[8].id | https://openalex.org/C77618280 |
| concepts[8].level | 2 |
| concepts[8].score | 0.45847514271736145 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1155772 |
| concepts[8].display_name | Scheme (mathematics) |
| concepts[9].id | https://openalex.org/C124101348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.45331740379333496 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[9].display_name | Data mining |
| concepts[10].id | https://openalex.org/C81860439 |
| concepts[10].level | 2 |
| concepts[10].score | 0.44781187176704407 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q251212 |
| concepts[10].display_name | Internet of Things |
| concepts[11].id | https://openalex.org/C149635348 |
| concepts[11].level | 1 |
| concepts[11].score | 0.23864272236824036 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q193040 |
| concepts[11].display_name | Embedded system |
| concepts[12].id | https://openalex.org/C120314980 |
| concepts[12].level | 1 |
| concepts[12].score | 0.15869542956352234 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[12].display_name | Distributed computing |
| concepts[13].id | https://openalex.org/C111919701 |
| concepts[13].level | 1 |
| concepts[13].score | 0.12397757172584534 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[13].display_name | Operating system |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C199360897 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[15].display_name | Programming language |
| concepts[16].id | https://openalex.org/C134306372 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[16].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/spark |
| keywords[0].score | 0.8904483318328857 |
| keywords[0].display_name | SPARK (programming language) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.8730673789978027 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/big-data |
| keywords[2].score | 0.8315119743347168 |
| keywords[2].display_name | Big data |
| keywords[3].id | https://openalex.org/keywords/analytics |
| keywords[3].score | 0.6143892407417297 |
| keywords[3].display_name | Analytics |
| keywords[4].id | https://openalex.org/keywords/real-time-computing |
| keywords[4].score | 0.550732433795929 |
| keywords[4].display_name | Real-time computing |
| keywords[5].id | https://openalex.org/keywords/anomaly-detection |
| keywords[5].score | 0.5338322520256042 |
| keywords[5].display_name | Anomaly detection |
| keywords[6].id | https://openalex.org/keywords/wireless-sensor-network |
| keywords[6].score | 0.49767163395881653 |
| keywords[6].display_name | Wireless sensor network |
| keywords[7].id | https://openalex.org/keywords/stream-processing |
| keywords[7].score | 0.4808284044265747 |
| keywords[7].display_name | Stream processing |
| keywords[8].id | https://openalex.org/keywords/scheme |
| keywords[8].score | 0.45847514271736145 |
| keywords[8].display_name | Scheme (mathematics) |
| keywords[9].id | https://openalex.org/keywords/data-mining |
| keywords[9].score | 0.45331740379333496 |
| keywords[9].display_name | Data mining |
| keywords[10].id | https://openalex.org/keywords/internet-of-things |
| keywords[10].score | 0.44781187176704407 |
| keywords[10].display_name | Internet of Things |
| keywords[11].id | https://openalex.org/keywords/embedded-system |
| keywords[11].score | 0.23864272236824036 |
| keywords[11].display_name | Embedded system |
| keywords[12].id | https://openalex.org/keywords/distributed-computing |
| keywords[12].score | 0.15869542956352234 |
| keywords[12].display_name | Distributed computing |
| keywords[13].id | https://openalex.org/keywords/operating-system |
| keywords[13].score | 0.12397757172584534 |
| keywords[13].display_name | Operating system |
| language | en |
| locations[0].id | doi:10.1016/j.procs.2020.03.286 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S120348307 |
| locations[0].source.issn | 1877-0509 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1877-0509 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Procedia Computer Science |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Procedia Computer Science |
| locations[0].landing_page_url | https://doi.org/10.1016/j.procs.2020.03.286 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5090381393 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0456-1572 |
| authorships[0].author.display_name | Govind P. Gupta |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I38335241 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Information Technology National Institute of Technology Raipur 492010, India |
| authorships[0].institutions[0].id | https://openalex.org/I38335241 |
| authorships[0].institutions[0].ror | https://ror.org/02y553197 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I38335241 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | National Institute of Technology Raipur |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Govind P. Gupta |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Information Technology National Institute of Technology Raipur 492010, India |
| authorships[1].author.id | https://openalex.org/A5085511280 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Jahanvi Khedwal |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I38335241 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Information Technology National Institute of Technology Raipur 492010, India |
| authorships[1].institutions[0].id | https://openalex.org/I38335241 |
| authorships[1].institutions[0].ror | https://ror.org/02y553197 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I38335241 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | National Institute of Technology Raipur |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Jahanvi Khedwal |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Information Technology National Institute of Technology Raipur 492010, India |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.procs.2020.03.286 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Framework for Error Detection & its Localization in Sensor Data Stream for reliable big sensor data analytics using Apache Spark Streaming |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12761 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9965000152587891 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Data Stream Mining Techniques |
| related_works | https://openalex.org/W1975949872, https://openalex.org/W2564266326, https://openalex.org/W3191926225, https://openalex.org/W2767178487, https://openalex.org/W3168832835, https://openalex.org/W3044060397, https://openalex.org/W4230978433, https://openalex.org/W2893963003, https://openalex.org/W2920657135, https://openalex.org/W2953080867 |
| cited_by_count | 10 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.procs.2020.03.286 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S120348307 |
| best_oa_location.source.issn | 1877-0509 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1877-0509 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Procedia Computer Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Procedia Computer Science |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.procs.2020.03.286 |
| primary_location.id | doi:10.1016/j.procs.2020.03.286 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S120348307 |
| primary_location.source.issn | 1877-0509 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1877-0509 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Procedia Computer Science |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Procedia Computer Science |
| primary_location.landing_page_url | https://doi.org/10.1016/j.procs.2020.03.286 |
| publication_date | 2020-01-01 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2110173188, https://openalex.org/W2065769502, https://openalex.org/W2042182508, https://openalex.org/W6738901931, https://openalex.org/W6649732611, https://openalex.org/W2164040995, https://openalex.org/W1559557989, https://openalex.org/W2150015649, https://openalex.org/W2767083195, https://openalex.org/W2163154541, https://openalex.org/W2124624981, https://openalex.org/W1975593772, https://openalex.org/W2103002476, https://openalex.org/W165281197, https://openalex.org/W2059133904, https://openalex.org/W3103071483, https://openalex.org/W1997055756, https://openalex.org/W2620898983, https://openalex.org/W2150576257 |
| referenced_works_count | 19 |
| abstract_inverted_index.a | 45, 74 |
| abstract_inverted_index.In | 30, 69 |
| abstract_inverted_index.an | 86 |
| abstract_inverted_index.as | 104, 121 |
| abstract_inverted_index.in | 14, 60, 94, 134 |
| abstract_inverted_index.is | 4, 44, 114 |
| abstract_inverted_index.of | 1, 6, 10, 26, 39, 50, 110, 126, 136 |
| abstract_inverted_index.to | 22 |
| abstract_inverted_index.we | 72 |
| abstract_inverted_index.Big | 11, 31 |
| abstract_inverted_index.air | 123 |
| abstract_inverted_index.and | 24, 36, 41, 58, 81, 91, 130 |
| abstract_inverted_index.big | 8, 99 |
| abstract_inverted_index.due | 21 |
| abstract_inverted_index.for | 54, 66, 77, 89 |
| abstract_inverted_index.its | 42, 82 |
| abstract_inverted_index.one | 5 |
| abstract_inverted_index.the | 7, 27, 51, 55, 111, 127 |
| abstract_inverted_index.two | 117 |
| abstract_inverted_index.use | 63 |
| abstract_inverted_index.Most | 49 |
| abstract_inverted_index.city | 129 |
| abstract_inverted_index.data | 13, 33, 62, 96, 100 |
| abstract_inverted_index.done | 115 |
| abstract_inverted_index.fast | 35 |
| abstract_inverted_index.such | 103, 120 |
| abstract_inverted_index.this | 70 |
| abstract_inverted_index.uses | 85 |
| abstract_inverted_index.(IoT) | 3 |
| abstract_inverted_index.Intel | 131 |
| abstract_inverted_index.Spark | 106 |
| abstract_inverted_index.error | 40, 56, 79 |
| abstract_inverted_index.false | 137 |
| abstract_inverted_index.novel | 75 |
| abstract_inverted_index.often | 19 |
| abstract_inverted_index.terms | 135 |
| abstract_inverted_index.tools | 102 |
| abstract_inverted_index.using | 97, 116 |
| abstract_inverted_index.which | 15, 84 |
| abstract_inverted_index.Apache | 105 |
| abstract_inverted_index.Raipur | 128 |
| abstract_inverted_index.Sensor | 12, 32 |
| abstract_inverted_index.Things | 2 |
| abstract_inverted_index.errors | 93 |
| abstract_inverted_index.issue. | 48 |
| abstract_inverted_index.latest | 98 |
| abstract_inverted_index.losses | 25 |
| abstract_inverted_index.online | 78, 87 |
| abstract_inverted_index.paper, | 71 |
| abstract_inverted_index.scheme | 88 |
| abstract_inverted_index.sensor | 17, 28, 61, 95, 132 |
| abstract_inverted_index.dataset | 125, 133 |
| abstract_inverted_index.errors. | 68 |
| abstract_inverted_index.offline | 64 |
| abstract_inverted_index.propose | 73 |
| abstract_inverted_index.quality | 124 |
| abstract_inverted_index.sources | 9 |
| abstract_inverted_index.Internet | 0 |
| abstract_inverted_index.datasets | 119 |
| abstract_inverted_index.existing | 52 |
| abstract_inverted_index.polluted | 20 |
| abstract_inverted_index.proposed | 112 |
| abstract_inverted_index.readings | 18 |
| abstract_inverted_index.research | 47 |
| abstract_inverted_index.collected | 16 |
| abstract_inverted_index.detecting | 67, 90 |
| abstract_inverted_index.detection | 38, 57, 80 |
| abstract_inverted_index.different | 118 |
| abstract_inverted_index.efficient | 37 |
| abstract_inverted_index.framework | 76, 113 |
| abstract_inverted_index.positive. | 138 |
| abstract_inverted_index.readings. | 29 |
| abstract_inverted_index.real-time | 122 |
| abstract_inverted_index.solutions | 53 |
| abstract_inverted_index.analytics, | 34 |
| abstract_inverted_index.corruption | 23 |
| abstract_inverted_index.evaluation | 109 |
| abstract_inverted_index.localizing | 92 |
| abstract_inverted_index.processing | 101 |
| abstract_inverted_index.streaming. | 107 |
| abstract_inverted_index.techniques | 65 |
| abstract_inverted_index.Performance | 108 |
| abstract_inverted_index.challenging | 46 |
| abstract_inverted_index.localization | 43, 59, 83 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 93 |
| corresponding_author_ids | https://openalex.org/A5090381393 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I38335241 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.8100000023841858 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.85056191 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |