Fraudulent account detection in social media using hybrid deep transformer model and hyperparameter optimization Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1038/s41598-025-24326-8
The high rate of social media development has triggered a high rate of fake accounts, which are a great risk to the privacy of users and the integrity of the platform. These malicious accounts are hard to detect because user activity data is highly imbalanced, dimensional, and sequential. The emergence of fake profiles on social media endangers the privacy and trust of social media users. It is difficult to detect such accounts because of high-dimensional, highly sequential, and imbalanced user behavior data. Current techniques tend to miss out on the complicated activity patterns or even overfit, which is why a strong, scalable, and precise model of social media fraud detection is required. This study suggests a new deep learning architecture that entails a Temporal Convolutional Network (TCN) with Generative Adversarial Network (GAN)-based data augmentation to generate minority classes, and Autoencoder-based feature extraction to reduce dimensionality. The Seagull Optimization Algorithm (SOA), which is a metaheuristic algorithm, is used to optimize hyperparameters by balancing efficiency and speed of convergence in global search. The framework is tested on benchmark datasets (Cresci-2017 and TwiBot-22) and compared to the state-of-the-art models. It has been shown in experiments that the suggested TCN-GAN-SOA framework performs better, with ROC-AUC scores of 0.96 on Cresci-2017 and 0.95 on TwiBot-22, and a higher precision-recall value and better F1-scores. In addition, computational efficiency can be verified by the runtime analysis; case studies prove the framework's strength when handling various situations of fraudulent behaviors. The given solution offers a scalable, reliable, and accurate methodology of detecting social media fraud based on the combination of sophisticated sequence modeling, realistic data augmentation, and hyperparameter optimization.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41598-025-24326-8
- https://www.nature.com/articles/s41598-025-24326-8.pdf
- OA Status
- gold
- Cited By
- 1
- References
- 34
- OpenAlex ID
- https://openalex.org/W4415816521
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415816521Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41598-025-24326-8Digital Object Identifier
- Title
-
Fraudulent account detection in social media using hybrid deep transformer model and hyperparameter optimizationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-03Full publication date if available
- Authors
-
Prashant Kumar Shukla, Bala Dhandayuthapani Veerasamy, Noha Alduaiji, Santosh Reddy Addula, Ankur Pandey, Noha AlduaijiList of authors in order
- Landing page
-
https://doi.org/10.1038/s41598-025-24326-8Publisher landing page
- PDF URL
-
https://www.nature.com/articles/s41598-025-24326-8.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.nature.com/articles/s41598-025-24326-8.pdfDirect OA link when available
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
34Number of works referenced by this work
Full payload
| id | https://openalex.org/W4415816521 |
|---|---|
| doi | https://doi.org/10.1038/s41598-025-24326-8 |
| ids.doi | https://doi.org/10.1038/s41598-025-24326-8 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/41184473 |
| ids.openalex | https://openalex.org/W4415816521 |
| fwci | |
| type | article |
| title | Fraudulent account detection in social media using hybrid deep transformer model and hyperparameter optimization |
| biblio.issue | 1 |
| biblio.volume | 15 |
| biblio.last_page | 38447 |
| biblio.first_page | 38447 |
| is_xpac | False |
| apc_list.value | 1890 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2190 |
| apc_paid.value | 1890 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2190 |
| language | en |
| locations[0].id | doi:10.1038/s41598-025-24326-8 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S196734849 |
| locations[0].source.issn | 2045-2322 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2045-2322 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Scientific Reports |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.nature.com/articles/s41598-025-24326-8.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Scientific Reports |
| locations[0].landing_page_url | https://doi.org/10.1038/s41598-025-24326-8 |
| locations[1].id | pmid:41184473 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Scientific reports |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/41184473 |
| locations[2].id | pmh:oai:doaj.org/article:548e3d241fad4de0bf505930d68aff49 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Scientific Reports, Vol 15, Iss 1, Pp 1-23 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/548e3d241fad4de0bf505930d68aff49 |
| locations[3].id | pmh:oai:europepmc.org:11392703 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12583523 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5053638739 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3092-2415 |
| authorships[0].author.display_name | Prashant Kumar Shukla |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I191972202 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering & Deputy Dean Research, Amity School of Engineering and Technology (ASET), Amity University Mumbai, Mumbai, 410206, Maharashtra, India |
| authorships[0].institutions[0].id | https://openalex.org/I191972202 |
| authorships[0].institutions[0].ror | https://ror.org/02n9z0v62 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I191972202 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Amity University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Prashant Kumar Shukla |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science and Engineering & Deputy Dean Research, Amity School of Engineering and Technology (ASET), Amity University Mumbai, Mumbai, 410206, Maharashtra, India |
| authorships[1].author.id | https://openalex.org/A5055696083 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8310-0642 |
| authorships[1].author.display_name | Bala Dhandayuthapani Veerasamy |
| authorships[1].affiliations[0].raw_affiliation_string | University of Technology and Applied Sciences-Shinas, Shinas, Oman |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Bala Dhandayuthapani Veerasamy |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Technology and Applied Sciences-Shinas, Shinas, Oman |
| authorships[2].author.id | https://openalex.org/A5037326834 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3423-0993 |
| authorships[2].author.display_name | Noha Alduaiji |
| authorships[2].countries | SA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I195631090 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science, College of Computer and Information Sciences, Majmaah University, Al Majmaah, 11952, Saudi Arabia |
| authorships[2].institutions[0].id | https://openalex.org/I195631090 |
| authorships[2].institutions[0].ror | https://ror.org/01mcrnj60 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I195631090 |
| authorships[2].institutions[0].country_code | SA |
| authorships[2].institutions[0].display_name | Majmaah University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Noha Alduaiji |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science, College of Computer and Information Sciences, Majmaah University, Al Majmaah, 11952, Saudi Arabia |
| authorships[3].author.id | https://openalex.org/A5094046167 |
| authorships[3].author.orcid | https://orcid.org/0009-0000-3286-8224 |
| authorships[3].author.display_name | Santosh Reddy Addula |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I276309446 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Information Technology, University of the Cumberlands, Williamsburg, KY, United States of America |
| authorships[3].institutions[0].id | https://openalex.org/I276309446 |
| authorships[3].institutions[0].ror | https://ror.org/05jz3sn81 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I276309446 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of the Cumberlands |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Santosh Reddy Addula |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Information Technology, University of the Cumberlands, Williamsburg, KY, United States of America |
| authorships[4].author.id | https://openalex.org/A5021608731 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6820-9722 |
| authorships[4].author.display_name | Ankur Pandey |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I73779912 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India |
| authorships[4].institutions[0].id | https://openalex.org/I73779912 |
| authorships[4].institutions[0].ror | https://ror.org/040h76494 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I73779912 |
| authorships[4].institutions[0].country_code | |
| authorships[4].institutions[0].display_name | Manipal University Jaipur |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ankur Pandey |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Department of Computer Science and Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India |
| authorships[5].author.id | https://openalex.org/A5037326834 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3423-0993 |
| authorships[5].author.display_name | Noha Alduaiji |
| authorships[5].countries | IN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I196622127 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Computer Science & Engineering, University Institute of Technology, Rajiv Gandhi Proudyogiki Vishwavidyalaya (State Technological University of Madhya Pradesh), Bhopal, 462033, Madhya Pradesh, India |
| authorships[5].institutions[0].id | https://openalex.org/I196622127 |
| authorships[5].institutions[0].ror | https://ror.org/03xmje391 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I196622127 |
| authorships[5].institutions[0].country_code | IN |
| authorships[5].institutions[0].display_name | Rajiv Gandhi Technical University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Piyush Kumar Shukla |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Computer Science & Engineering, University Institute of Technology, Rajiv Gandhi Proudyogiki Vishwavidyalaya (State Technological University of Madhya Pradesh), Bhopal, 462033, Madhya Pradesh, India |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.nature.com/articles/s41598-025-24326-8.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-03T00:00:00 |
| display_name | Fraudulent account detection in social media using hybrid deep transformer model and hyperparameter optimization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic | |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1038/s41598-025-24326-8 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S196734849 |
| best_oa_location.source.issn | 2045-2322 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2045-2322 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Scientific Reports |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.nature.com/articles/s41598-025-24326-8.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Scientific Reports |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41598-025-24326-8 |
| primary_location.id | doi:10.1038/s41598-025-24326-8 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S196734849 |
| primary_location.source.issn | 2045-2322 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2045-2322 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Scientific Reports |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.nature.com/articles/s41598-025-24326-8.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Scientific Reports |
| primary_location.landing_page_url | https://doi.org/10.1038/s41598-025-24326-8 |
| publication_date | 2025-11-03 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4399138218, https://openalex.org/W2810678772, https://openalex.org/W4402680673, https://openalex.org/W4411260018, https://openalex.org/W3125563626, https://openalex.org/W4393028142, https://openalex.org/W4389427921, https://openalex.org/W4387951044, https://openalex.org/W4399610663, https://openalex.org/W4396590096, https://openalex.org/W4404081560, https://openalex.org/W4390750600, https://openalex.org/W4400275782, https://openalex.org/W4399129437, https://openalex.org/W4396768999, https://openalex.org/W4391812672, https://openalex.org/W4407217751, https://openalex.org/W3196222640, https://openalex.org/W3035240583, https://openalex.org/W4385458448, https://openalex.org/W4415565256, https://openalex.org/W4408898646, https://openalex.org/W4387653890, https://openalex.org/W4323653672, https://openalex.org/W4312075150, https://openalex.org/W3205903219, https://openalex.org/W4408070635, https://openalex.org/W3138970751, https://openalex.org/W4386014803, https://openalex.org/W3206719321, https://openalex.org/W4206420106, https://openalex.org/W4401415934, https://openalex.org/W4323357155, https://openalex.org/W4313572588 |
| referenced_works_count | 34 |
| abstract_inverted_index.a | 9, 17, 99, 115, 122, 152, 211, 246 |
| abstract_inverted_index.In | 218 |
| abstract_inverted_index.It | 65, 186 |
| abstract_inverted_index.be | 223 |
| abstract_inverted_index.by | 160, 225 |
| abstract_inverted_index.in | 167, 190 |
| abstract_inverted_index.is | 42, 66, 97, 110, 151, 155, 172 |
| abstract_inverted_index.of | 3, 12, 23, 28, 50, 61, 73, 105, 165, 202, 239, 252, 261 |
| abstract_inverted_index.on | 53, 88, 174, 204, 208, 258 |
| abstract_inverted_index.or | 93 |
| abstract_inverted_index.to | 20, 36, 68, 85, 134, 142, 157, 182 |
| abstract_inverted_index.The | 0, 48, 145, 170, 242 |
| abstract_inverted_index.and | 25, 46, 59, 77, 102, 138, 163, 178, 180, 206, 210, 215, 249, 268 |
| abstract_inverted_index.are | 16, 34 |
| abstract_inverted_index.can | 222 |
| abstract_inverted_index.has | 7, 187 |
| abstract_inverted_index.new | 116 |
| abstract_inverted_index.out | 87 |
| abstract_inverted_index.the | 21, 26, 29, 57, 89, 183, 193, 226, 232, 259 |
| abstract_inverted_index.why | 98 |
| abstract_inverted_index.0.95 | 207 |
| abstract_inverted_index.0.96 | 203 |
| abstract_inverted_index.This | 112 |
| abstract_inverted_index.been | 188 |
| abstract_inverted_index.case | 229 |
| abstract_inverted_index.data | 41, 132, 266 |
| abstract_inverted_index.deep | 117 |
| abstract_inverted_index.even | 94 |
| abstract_inverted_index.fake | 13, 51 |
| abstract_inverted_index.hard | 35 |
| abstract_inverted_index.high | 1, 10 |
| abstract_inverted_index.miss | 86 |
| abstract_inverted_index.rate | 2, 11 |
| abstract_inverted_index.risk | 19 |
| abstract_inverted_index.such | 70 |
| abstract_inverted_index.tend | 84 |
| abstract_inverted_index.that | 120, 192 |
| abstract_inverted_index.used | 156 |
| abstract_inverted_index.user | 39, 79 |
| abstract_inverted_index.when | 235 |
| abstract_inverted_index.with | 127, 199 |
| abstract_inverted_index.(TCN) | 126 |
| abstract_inverted_index.These | 31 |
| abstract_inverted_index.based | 257 |
| abstract_inverted_index.data. | 81 |
| abstract_inverted_index.fraud | 108, 256 |
| abstract_inverted_index.given | 243 |
| abstract_inverted_index.great | 18 |
| abstract_inverted_index.media | 5, 55, 63, 107, 255 |
| abstract_inverted_index.model | 104 |
| abstract_inverted_index.prove | 231 |
| abstract_inverted_index.shown | 189 |
| abstract_inverted_index.speed | 164 |
| abstract_inverted_index.study | 113 |
| abstract_inverted_index.trust | 60 |
| abstract_inverted_index.users | 24 |
| abstract_inverted_index.value | 214 |
| abstract_inverted_index.which | 15, 96, 150 |
| abstract_inverted_index.(SOA), | 149 |
| abstract_inverted_index.better | 216 |
| abstract_inverted_index.detect | 37, 69 |
| abstract_inverted_index.global | 168 |
| abstract_inverted_index.higher | 212 |
| abstract_inverted_index.highly | 43, 75 |
| abstract_inverted_index.offers | 245 |
| abstract_inverted_index.reduce | 143 |
| abstract_inverted_index.scores | 201 |
| abstract_inverted_index.social | 4, 54, 62, 106, 254 |
| abstract_inverted_index.tested | 173 |
| abstract_inverted_index.users. | 64 |
| abstract_inverted_index.Current | 82 |
| abstract_inverted_index.Network | 125, 130 |
| abstract_inverted_index.ROC-AUC | 200 |
| abstract_inverted_index.Seagull | 146 |
| abstract_inverted_index.because | 38, 72 |
| abstract_inverted_index.better, | 198 |
| abstract_inverted_index.entails | 121 |
| abstract_inverted_index.feature | 140 |
| abstract_inverted_index.models. | 185 |
| abstract_inverted_index.precise | 103 |
| abstract_inverted_index.privacy | 22, 58 |
| abstract_inverted_index.runtime | 227 |
| abstract_inverted_index.search. | 169 |
| abstract_inverted_index.strong, | 100 |
| abstract_inverted_index.studies | 230 |
| abstract_inverted_index.various | 237 |
| abstract_inverted_index.Temporal | 123 |
| abstract_inverted_index.accounts | 33, 71 |
| abstract_inverted_index.accurate | 250 |
| abstract_inverted_index.activity | 40, 91 |
| abstract_inverted_index.behavior | 80 |
| abstract_inverted_index.classes, | 137 |
| abstract_inverted_index.compared | 181 |
| abstract_inverted_index.datasets | 176 |
| abstract_inverted_index.generate | 135 |
| abstract_inverted_index.handling | 236 |
| abstract_inverted_index.learning | 118 |
| abstract_inverted_index.minority | 136 |
| abstract_inverted_index.optimize | 158 |
| abstract_inverted_index.overfit, | 95 |
| abstract_inverted_index.patterns | 92 |
| abstract_inverted_index.performs | 197 |
| abstract_inverted_index.profiles | 52 |
| abstract_inverted_index.sequence | 263 |
| abstract_inverted_index.solution | 244 |
| abstract_inverted_index.strength | 234 |
| abstract_inverted_index.suggests | 114 |
| abstract_inverted_index.verified | 224 |
| abstract_inverted_index.Algorithm | 148 |
| abstract_inverted_index.accounts, | 14 |
| abstract_inverted_index.addition, | 219 |
| abstract_inverted_index.analysis; | 228 |
| abstract_inverted_index.balancing | 161 |
| abstract_inverted_index.benchmark | 175 |
| abstract_inverted_index.detecting | 253 |
| abstract_inverted_index.detection | 109 |
| abstract_inverted_index.difficult | 67 |
| abstract_inverted_index.emergence | 49 |
| abstract_inverted_index.endangers | 56 |
| abstract_inverted_index.framework | 171, 196 |
| abstract_inverted_index.integrity | 27 |
| abstract_inverted_index.malicious | 32 |
| abstract_inverted_index.modeling, | 264 |
| abstract_inverted_index.platform. | 30 |
| abstract_inverted_index.realistic | 265 |
| abstract_inverted_index.reliable, | 248 |
| abstract_inverted_index.required. | 111 |
| abstract_inverted_index.scalable, | 101, 247 |
| abstract_inverted_index.suggested | 194 |
| abstract_inverted_index.triggered | 8 |
| abstract_inverted_index.F1-scores. | 217 |
| abstract_inverted_index.Generative | 128 |
| abstract_inverted_index.TwiBot-22) | 179 |
| abstract_inverted_index.TwiBot-22, | 209 |
| abstract_inverted_index.algorithm, | 154 |
| abstract_inverted_index.behaviors. | 241 |
| abstract_inverted_index.efficiency | 162, 221 |
| abstract_inverted_index.extraction | 141 |
| abstract_inverted_index.fraudulent | 240 |
| abstract_inverted_index.imbalanced | 78 |
| abstract_inverted_index.situations | 238 |
| abstract_inverted_index.techniques | 83 |
| abstract_inverted_index.(GAN)-based | 131 |
| abstract_inverted_index.Adversarial | 129 |
| abstract_inverted_index.Cresci-2017 | 205 |
| abstract_inverted_index.TCN-GAN-SOA | 195 |
| abstract_inverted_index.combination | 260 |
| abstract_inverted_index.complicated | 90 |
| abstract_inverted_index.convergence | 166 |
| abstract_inverted_index.development | 6 |
| abstract_inverted_index.experiments | 191 |
| abstract_inverted_index.framework's | 233 |
| abstract_inverted_index.imbalanced, | 44 |
| abstract_inverted_index.methodology | 251 |
| abstract_inverted_index.sequential, | 76 |
| abstract_inverted_index.sequential. | 47 |
| abstract_inverted_index.(Cresci-2017 | 177 |
| abstract_inverted_index.Optimization | 147 |
| abstract_inverted_index.architecture | 119 |
| abstract_inverted_index.augmentation | 133 |
| abstract_inverted_index.dimensional, | 45 |
| abstract_inverted_index.Convolutional | 124 |
| abstract_inverted_index.augmentation, | 267 |
| abstract_inverted_index.computational | 220 |
| abstract_inverted_index.metaheuristic | 153 |
| abstract_inverted_index.optimization. | 270 |
| abstract_inverted_index.sophisticated | 262 |
| abstract_inverted_index.hyperparameter | 269 |
| abstract_inverted_index.dimensionality. | 144 |
| abstract_inverted_index.hyperparameters | 159 |
| abstract_inverted_index.precision-recall | 213 |
| abstract_inverted_index.state-of-the-art | 184 |
| abstract_inverted_index.Autoencoder-based | 139 |
| abstract_inverted_index.high-dimensional, | 74 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5021608731 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I73779912 |
| citation_normalized_percentile |