FRED: Flexible REduction-Distribution Interconnect and Communication Implementation for Wafer-Scale Distributed Training of DNN Models Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2406.19580
Distributed Deep Neural Network (DNN) training is a technique to reduce the training overhead by distributing the training tasks into multiple accelerators, according to a parallelization strategy. However, high-performance compute and interconnects are needed for maximum speed-up and linear scaling of the system. Wafer-scale systems are a promising technology that allows for tightly integrating high-end accelerators with high-speed wafer-scale interconnects, making it an attractive platform for distributed training. However, the wafer-scale interconnect should offer high performance and flexibility for various parallelization strategies to enable maximum optimizations for compute and memory usage. In this paper, we propose FRED, a wafer-scale interconnect that is tailored for the high-BW requirements of wafer-scale networks and can efficiently execute communication patterns of different parallelization strategies. Furthermore, FRED supports in-switch collective communication execution that reduces the network traffic by approximately 2X. Our results show that FRED can improve the average end-to-end training time of ResNet-152, Transformer-17B, GPT-3, and Transformer-1T by 1.76X, 1.87X, 1.34X, and 1.4X, respectively when compared to a baseline waferscale 2D-Mesh fabric.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2406.19580
- https://arxiv.org/pdf/2406.19580
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400222482
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400222482Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2406.19580Digital Object Identifier
- Title
-
FRED: Flexible REduction-Distribution Interconnect and Communication Implementation for Wafer-Scale Distributed Training of DNN ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-06-28Full publication date if available
- Authors
-
Saeed Rashidi, William Won, Sudarshan K. Srinivasan, Puneet Gupta, Tushar KrishnaList of authors in order
- Landing page
-
https://arxiv.org/abs/2406.19580Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2406.19580Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2406.19580Direct OA link when available
- Concepts
-
Reduction (mathematics), Interconnection, Scale (ratio), Computer science, Training (meteorology), Wafer, Distribution (mathematics), Distributed computing, Embedded system, Computer network, Engineering, Electrical engineering, Mathematics, Geography, Cartography, Mathematical analysis, Meteorology, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400222482 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2406.19580 |
| ids.doi | https://doi.org/10.48550/arxiv.2406.19580 |
| ids.openalex | https://openalex.org/W4400222482 |
| fwci | |
| type | preprint |
| title | FRED: Flexible REduction-Distribution Interconnect and Communication Implementation for Wafer-Scale Distributed Training of DNN Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11932 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.37059998512268066 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Wireless Body Area Networks |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C111335779 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7370336055755615 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3454686 |
| concepts[0].display_name | Reduction (mathematics) |
| concepts[1].id | https://openalex.org/C123745756 |
| concepts[1].level | 2 |
| concepts[1].score | 0.632444441318512 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1665949 |
| concepts[1].display_name | Interconnection |
| concepts[2].id | https://openalex.org/C2778755073 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5533707141876221 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[2].display_name | Scale (ratio) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5128057599067688 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C2777211547 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4971158802509308 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17141490 |
| concepts[4].display_name | Training (meteorology) |
| concepts[5].id | https://openalex.org/C160671074 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4784105718135834 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q267131 |
| concepts[5].display_name | Wafer |
| concepts[6].id | https://openalex.org/C110121322 |
| concepts[6].level | 2 |
| concepts[6].score | 0.414086252450943 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q865811 |
| concepts[6].display_name | Distribution (mathematics) |
| concepts[7].id | https://openalex.org/C120314980 |
| concepts[7].level | 1 |
| concepts[7].score | 0.35328614711761475 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[7].display_name | Distributed computing |
| concepts[8].id | https://openalex.org/C149635348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.34274041652679443 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q193040 |
| concepts[8].display_name | Embedded system |
| concepts[9].id | https://openalex.org/C31258907 |
| concepts[9].level | 1 |
| concepts[9].score | 0.2720451354980469 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[9].display_name | Computer network |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.24777498841285706 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C119599485 |
| concepts[11].level | 1 |
| concepts[11].score | 0.18903449177742004 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[11].display_name | Electrical engineering |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0844210684299469 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C205649164 |
| concepts[13].level | 0 |
| concepts[13].score | 0.07095208764076233 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[13].display_name | Geography |
| concepts[14].id | https://openalex.org/C58640448 |
| concepts[14].level | 1 |
| concepts[14].score | 0.06265056133270264 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[14].display_name | Cartography |
| concepts[15].id | https://openalex.org/C134306372 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[15].display_name | Mathematical analysis |
| concepts[16].id | https://openalex.org/C153294291 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[16].display_name | Meteorology |
| concepts[17].id | https://openalex.org/C2524010 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[17].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/reduction |
| keywords[0].score | 0.7370336055755615 |
| keywords[0].display_name | Reduction (mathematics) |
| keywords[1].id | https://openalex.org/keywords/interconnection |
| keywords[1].score | 0.632444441318512 |
| keywords[1].display_name | Interconnection |
| keywords[2].id | https://openalex.org/keywords/scale |
| keywords[2].score | 0.5533707141876221 |
| keywords[2].display_name | Scale (ratio) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5128057599067688 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/training |
| keywords[4].score | 0.4971158802509308 |
| keywords[4].display_name | Training (meteorology) |
| keywords[5].id | https://openalex.org/keywords/wafer |
| keywords[5].score | 0.4784105718135834 |
| keywords[5].display_name | Wafer |
| keywords[6].id | https://openalex.org/keywords/distribution |
| keywords[6].score | 0.414086252450943 |
| keywords[6].display_name | Distribution (mathematics) |
| keywords[7].id | https://openalex.org/keywords/distributed-computing |
| keywords[7].score | 0.35328614711761475 |
| keywords[7].display_name | Distributed computing |
| keywords[8].id | https://openalex.org/keywords/embedded-system |
| keywords[8].score | 0.34274041652679443 |
| keywords[8].display_name | Embedded system |
| keywords[9].id | https://openalex.org/keywords/computer-network |
| keywords[9].score | 0.2720451354980469 |
| keywords[9].display_name | Computer network |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.24777498841285706 |
| keywords[10].display_name | Engineering |
| keywords[11].id | https://openalex.org/keywords/electrical-engineering |
| keywords[11].score | 0.18903449177742004 |
| keywords[11].display_name | Electrical engineering |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.0844210684299469 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/geography |
| keywords[13].score | 0.07095208764076233 |
| keywords[13].display_name | Geography |
| keywords[14].id | https://openalex.org/keywords/cartography |
| keywords[14].score | 0.06265056133270264 |
| keywords[14].display_name | Cartography |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2406.19580 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2406.19580 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2406.19580 |
| locations[1].id | doi:10.48550/arxiv.2406.19580 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2406.19580 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5088899364 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6472-9920 |
| authorships[0].author.display_name | Saeed Rashidi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rashidi, Saeed |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5068175490 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1715-9144 |
| authorships[1].author.display_name | William Won |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Won, William |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5033170576 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7040-384X |
| authorships[2].author.display_name | Sudarshan K. Srinivasan |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Srinivasan, Sudarshan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5084229134 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6188-1134 |
| authorships[3].author.display_name | Puneet Gupta |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Gupta, Puneet |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5034089074 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5738-6942 |
| authorships[4].author.display_name | Tushar Krishna |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Krishna, Tushar |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2406.19580 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | FRED: Flexible REduction-Distribution Interconnect and Communication Implementation for Wafer-Scale Distributed Training of DNN Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11932 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.37059998512268066 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Wireless Body Area Networks |
| related_works | https://openalex.org/W230091440, https://openalex.org/W1998662473, https://openalex.org/W2075391483, https://openalex.org/W2155019192, https://openalex.org/W2742348144, https://openalex.org/W2014709025, https://openalex.org/W2038820605, https://openalex.org/W2233261550, https://openalex.org/W1985417357, https://openalex.org/W2810751659 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2406.19580 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2406.19580 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2406.19580 |
| primary_location.id | pmh:oai:arXiv.org:2406.19580 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2406.19580 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2406.19580 |
| publication_date | 2024-06-28 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 7, 24, 46, 97, 163 |
| abstract_inverted_index.In | 91 |
| abstract_inverted_index.an | 62 |
| abstract_inverted_index.by | 14, 132, 153 |
| abstract_inverted_index.is | 6, 101 |
| abstract_inverted_index.it | 61 |
| abstract_inverted_index.of | 40, 107, 116, 147 |
| abstract_inverted_index.to | 9, 23, 82, 162 |
| abstract_inverted_index.we | 94 |
| abstract_inverted_index.2X. | 134 |
| abstract_inverted_index.Our | 135 |
| abstract_inverted_index.and | 30, 37, 76, 88, 110, 151, 157 |
| abstract_inverted_index.are | 32, 45 |
| abstract_inverted_index.can | 111, 140 |
| abstract_inverted_index.for | 34, 51, 65, 78, 86, 103 |
| abstract_inverted_index.the | 11, 16, 41, 69, 104, 129, 142 |
| abstract_inverted_index.Deep | 1 |
| abstract_inverted_index.FRED | 121, 139 |
| abstract_inverted_index.high | 74 |
| abstract_inverted_index.into | 19 |
| abstract_inverted_index.show | 137 |
| abstract_inverted_index.that | 49, 100, 127, 138 |
| abstract_inverted_index.this | 92 |
| abstract_inverted_index.time | 146 |
| abstract_inverted_index.when | 160 |
| abstract_inverted_index.with | 56 |
| abstract_inverted_index.(DNN) | 4 |
| abstract_inverted_index.1.4X, | 158 |
| abstract_inverted_index.FRED, | 96 |
| abstract_inverted_index.offer | 73 |
| abstract_inverted_index.tasks | 18 |
| abstract_inverted_index.1.34X, | 156 |
| abstract_inverted_index.1.76X, | 154 |
| abstract_inverted_index.1.87X, | 155 |
| abstract_inverted_index.GPT-3, | 150 |
| abstract_inverted_index.Neural | 2 |
| abstract_inverted_index.allows | 50 |
| abstract_inverted_index.enable | 83 |
| abstract_inverted_index.linear | 38 |
| abstract_inverted_index.making | 60 |
| abstract_inverted_index.memory | 89 |
| abstract_inverted_index.needed | 33 |
| abstract_inverted_index.paper, | 93 |
| abstract_inverted_index.reduce | 10 |
| abstract_inverted_index.should | 72 |
| abstract_inverted_index.usage. | 90 |
| abstract_inverted_index.2D-Mesh | 166 |
| abstract_inverted_index.Network | 3 |
| abstract_inverted_index.average | 143 |
| abstract_inverted_index.compute | 29, 87 |
| abstract_inverted_index.execute | 113 |
| abstract_inverted_index.fabric. | 167 |
| abstract_inverted_index.high-BW | 105 |
| abstract_inverted_index.improve | 141 |
| abstract_inverted_index.maximum | 35, 84 |
| abstract_inverted_index.network | 130 |
| abstract_inverted_index.propose | 95 |
| abstract_inverted_index.reduces | 128 |
| abstract_inverted_index.results | 136 |
| abstract_inverted_index.scaling | 39 |
| abstract_inverted_index.system. | 42 |
| abstract_inverted_index.systems | 44 |
| abstract_inverted_index.tightly | 52 |
| abstract_inverted_index.traffic | 131 |
| abstract_inverted_index.various | 79 |
| abstract_inverted_index.However, | 27, 68 |
| abstract_inverted_index.baseline | 164 |
| abstract_inverted_index.compared | 161 |
| abstract_inverted_index.high-end | 54 |
| abstract_inverted_index.multiple | 20 |
| abstract_inverted_index.networks | 109 |
| abstract_inverted_index.overhead | 13 |
| abstract_inverted_index.patterns | 115 |
| abstract_inverted_index.platform | 64 |
| abstract_inverted_index.speed-up | 36 |
| abstract_inverted_index.supports | 122 |
| abstract_inverted_index.tailored | 102 |
| abstract_inverted_index.training | 5, 12, 17, 145 |
| abstract_inverted_index.according | 22 |
| abstract_inverted_index.different | 117 |
| abstract_inverted_index.execution | 126 |
| abstract_inverted_index.in-switch | 123 |
| abstract_inverted_index.promising | 47 |
| abstract_inverted_index.strategy. | 26 |
| abstract_inverted_index.technique | 8 |
| abstract_inverted_index.training. | 67 |
| abstract_inverted_index.attractive | 63 |
| abstract_inverted_index.collective | 124 |
| abstract_inverted_index.end-to-end | 144 |
| abstract_inverted_index.high-speed | 57 |
| abstract_inverted_index.strategies | 81 |
| abstract_inverted_index.technology | 48 |
| abstract_inverted_index.waferscale | 165 |
| abstract_inverted_index.Distributed | 0 |
| abstract_inverted_index.ResNet-152, | 148 |
| abstract_inverted_index.Wafer-scale | 43 |
| abstract_inverted_index.distributed | 66 |
| abstract_inverted_index.efficiently | 112 |
| abstract_inverted_index.flexibility | 77 |
| abstract_inverted_index.integrating | 53 |
| abstract_inverted_index.performance | 75 |
| abstract_inverted_index.strategies. | 119 |
| abstract_inverted_index.wafer-scale | 58, 70, 98, 108 |
| abstract_inverted_index.Furthermore, | 120 |
| abstract_inverted_index.accelerators | 55 |
| abstract_inverted_index.distributing | 15 |
| abstract_inverted_index.interconnect | 71, 99 |
| abstract_inverted_index.requirements | 106 |
| abstract_inverted_index.respectively | 159 |
| abstract_inverted_index.accelerators, | 21 |
| abstract_inverted_index.approximately | 133 |
| abstract_inverted_index.communication | 114, 125 |
| abstract_inverted_index.interconnects | 31 |
| abstract_inverted_index.optimizations | 85 |
| abstract_inverted_index.Transformer-1T | 152 |
| abstract_inverted_index.interconnects, | 59 |
| abstract_inverted_index.parallelization | 25, 80, 118 |
| abstract_inverted_index.Transformer-17B, | 149 |
| abstract_inverted_index.high-performance | 28 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |