FreeSeg-Diff: Training-Free Open-Vocabulary Segmentation with Diffusion Models Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/ijcnn64981.2025.11227428
Foundation models have exhibited unprecedented capabilities in tackling many domains and tasks. Models such as CLIP are currently widely used to bridge cross-modal representations, and text-to-image diffusion models are arguably the leading models in terms of realistic image generation. Image generative models are trained on massive datasets that provide them with powerful internal spatial representations. In this work, we explore the potential benefits of such representations, beyond image generation, in particular, for dense visual prediction tasks. We focus on the task of image segmentation, which is traditionally solved by training models on closed-vocabulary datasets, with pixel-level annotations. To avoid the annotation cost or training large diffusion models, we constraint our setup to be zero-shot and training-free. In a nutshell, our pipeline leverages different and relatively small-sized, open-source foundation models for zero-shot open-vocabulary segmentation. The pipeline is as follows: the image is passed to both a captioner model (i.e. BLIP) and a diffusion model (i.e., Stable Diffusion Model) to generate a text description and visual representation, respectively. The features are clustered and binarized to obtain class agnostic masks for each object. These masks are then mapped to a textual class, using the CLIP model to support open-vocabulary. Finally, we add a refinement step that allows to obtain a more precise segmentation mask. Our approach (dubbed FreeSeg-Diff), which does not rely on any training, outperforms many training-based approaches on both Pascal VOC and COCO datasets. In addition, we show very competitive results compared to the recent weakly-supervised segmentation approaches. We provide comprehensive experiments showing the superiority of diffusion model features compared to other pretrained models. Project page: https://bcorrad.github.io/freesegdiff/
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1109/ijcnn64981.2025.11227428
- OA Status
- green
- References
- 37
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393399541
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393399541Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/ijcnn64981.2025.11227428Digital Object Identifier
- Title
-
FreeSeg-Diff: Training-Free Open-Vocabulary Segmentation with Diffusion ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-30Full publication date if available
- Authors
-
Barbara Toniella Corradini, Mustafa Shukor, Paul Couairon, Guillaume Couairon, Franco Scarselli, Matthieu CordList of authors in order
- Landing page
-
https://doi.org/10.1109/ijcnn64981.2025.11227428Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2403.20105Direct OA link when available
- Concepts
-
Training (meteorology), Vocabulary, Computer science, Diffusion, Segmentation, Artificial intelligence, Linguistics, Geography, Philosophy, Physics, Thermodynamics, MeteorologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
37Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393399541 |
|---|---|
| doi | https://doi.org/10.1109/ijcnn64981.2025.11227428 |
| ids.doi | https://doi.org/10.48550/arxiv.2403.20105 |
| ids.openalex | https://openalex.org/W4393399541 |
| fwci | 0.0 |
| type | preprint |
| title | FreeSeg-Diff: Training-Free Open-Vocabulary Segmentation with Diffusion Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 8 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T10181 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9987000226974487 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Natural Language Processing Techniques |
| topics[1].id | https://openalex.org/T10028 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9900000095367432 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Topic Modeling |
| topics[2].id | https://openalex.org/T13629 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9506000280380249 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Text Readability and Simplification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2777211547 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5589407086372375 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17141490 |
| concepts[0].display_name | Training (meteorology) |
| concepts[1].id | https://openalex.org/C2777601683 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5498369932174683 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6499736 |
| concepts[1].display_name | Vocabulary |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5333777666091919 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C69357855 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5331950187683105 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q163214 |
| concepts[3].display_name | Diffusion |
| concepts[4].id | https://openalex.org/C89600930 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4338807463645935 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[4].display_name | Segmentation |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3324972987174988 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C41895202 |
| concepts[6].level | 1 |
| concepts[6].score | 0.17292875051498413 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[6].display_name | Linguistics |
| concepts[7].id | https://openalex.org/C205649164 |
| concepts[7].level | 0 |
| concepts[7].score | 0.1574307680130005 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[7].display_name | Geography |
| concepts[8].id | https://openalex.org/C138885662 |
| concepts[8].level | 0 |
| concepts[8].score | 0.08627176284790039 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[8].display_name | Philosophy |
| concepts[9].id | https://openalex.org/C121332964 |
| concepts[9].level | 0 |
| concepts[9].score | 0.07430750131607056 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[9].display_name | Physics |
| concepts[10].id | https://openalex.org/C97355855 |
| concepts[10].level | 1 |
| concepts[10].score | 0.06213375926017761 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[10].display_name | Thermodynamics |
| concepts[11].id | https://openalex.org/C153294291 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[11].display_name | Meteorology |
| keywords[0].id | https://openalex.org/keywords/training |
| keywords[0].score | 0.5589407086372375 |
| keywords[0].display_name | Training (meteorology) |
| keywords[1].id | https://openalex.org/keywords/vocabulary |
| keywords[1].score | 0.5498369932174683 |
| keywords[1].display_name | Vocabulary |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5333777666091919 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/diffusion |
| keywords[3].score | 0.5331950187683105 |
| keywords[3].display_name | Diffusion |
| keywords[4].id | https://openalex.org/keywords/segmentation |
| keywords[4].score | 0.4338807463645935 |
| keywords[4].display_name | Segmentation |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.3324972987174988 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/linguistics |
| keywords[6].score | 0.17292875051498413 |
| keywords[6].display_name | Linguistics |
| keywords[7].id | https://openalex.org/keywords/geography |
| keywords[7].score | 0.1574307680130005 |
| keywords[7].display_name | Geography |
| keywords[8].id | https://openalex.org/keywords/philosophy |
| keywords[8].score | 0.08627176284790039 |
| keywords[8].display_name | Philosophy |
| keywords[9].id | https://openalex.org/keywords/physics |
| keywords[9].score | 0.07430750131607056 |
| keywords[9].display_name | Physics |
| keywords[10].id | https://openalex.org/keywords/thermodynamics |
| keywords[10].score | 0.06213375926017761 |
| keywords[10].display_name | Thermodynamics |
| language | en |
| locations[0].id | doi:10.1109/ijcnn64981.2025.11227428 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2025 International Joint Conference on Neural Networks (IJCNN) |
| locations[0].landing_page_url | https://doi.org/10.1109/ijcnn64981.2025.11227428 |
| locations[1].id | pmh:oai:arXiv.org:2403.20105 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2403.20105 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2403.20105 |
| locations[2].id | doi:10.48550/arxiv.2403.20105 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.2403.20105 |
| indexed_in | arxiv, crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5044252882 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3568-5874 |
| authorships[0].author.display_name | Barbara Toniella Corradini |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Corradini, Barbara Toniella |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5111151249 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3100-6689 |
| authorships[1].author.display_name | Mustafa Shukor |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shukor, Mustafa |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5092189576 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Paul Couairon |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Couairon, Paul |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5065858250 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Guillaume Couairon |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Couairon, Guillaume |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5020560480 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1307-0772 |
| authorships[4].author.display_name | Franco Scarselli |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Scarselli, Franco |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5108118084 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-0627-5844 |
| authorships[5].author.display_name | Matthieu Cord |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Cord, Matthieu |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2403.20105 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-04-02T00:00:00 |
| display_name | FreeSeg-Diff: Training-Free Open-Vocabulary Segmentation with Diffusion Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-23T23:15:26.331081 |
| primary_topic.id | https://openalex.org/T10181 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9987000226974487 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Natural Language Processing Techniques |
| related_works | https://openalex.org/W230091440, https://openalex.org/W2233261550, https://openalex.org/W2810751659, https://openalex.org/W258997015, https://openalex.org/W2997094352, https://openalex.org/W3216976533, https://openalex.org/W100620283, https://openalex.org/W2495260952, https://openalex.org/W4366179611, https://openalex.org/W2996078371 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:2403.20105 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2403.20105 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2403.20105 |
| primary_location.id | doi:10.1109/ijcnn64981.2025.11227428 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2025 International Joint Conference on Neural Networks (IJCNN) |
| primary_location.landing_page_url | https://doi.org/10.1109/ijcnn64981.2025.11227428 |
| publication_date | 2025-06-30 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4404658388, https://openalex.org/W4406208390, https://openalex.org/W4386076458, https://openalex.org/W4312933868, https://openalex.org/W4390873054, https://openalex.org/W4390873211, https://openalex.org/W4410706541, https://openalex.org/W4312851514, https://openalex.org/W4386057777, https://openalex.org/W3207801859, https://openalex.org/W2948515602, https://openalex.org/W4313555467, https://openalex.org/W4221161877, https://openalex.org/W2799124825, https://openalex.org/W2982106100, https://openalex.org/W4386075561, https://openalex.org/W4312458986, https://openalex.org/W4386075819, https://openalex.org/W4386071604, https://openalex.org/W4386075997, https://openalex.org/W4312420092, https://openalex.org/W2108598243, https://openalex.org/W4312980231, https://openalex.org/W4386065432, https://openalex.org/W4390873752, https://openalex.org/W4412468250, https://openalex.org/W4390872876, https://openalex.org/W4390889782, https://openalex.org/W4403878709, https://openalex.org/W2037227137, https://openalex.org/W1861492603, https://openalex.org/W4386075766, https://openalex.org/W3159481202, https://openalex.org/W3035524453, https://openalex.org/W4312960937, https://openalex.org/W2565639579, https://openalex.org/W3035703639 |
| referenced_works_count | 37 |
| abstract_inverted_index.a | 117, 144, 150, 159, 186, 199, 206 |
| abstract_inverted_index.In | 55, 116, 233 |
| abstract_inverted_index.To | 97 |
| abstract_inverted_index.We | 76, 247 |
| abstract_inverted_index.as | 14, 136 |
| abstract_inverted_index.be | 112 |
| abstract_inverted_index.by | 88 |
| abstract_inverted_index.in | 6, 33, 69 |
| abstract_inverted_index.is | 85, 135, 140 |
| abstract_inverted_index.of | 35, 63, 81, 254 |
| abstract_inverted_index.on | 44, 78, 91, 219, 226 |
| abstract_inverted_index.or | 102 |
| abstract_inverted_index.to | 20, 111, 142, 157, 172, 185, 193, 204, 241, 259 |
| abstract_inverted_index.we | 58, 107, 197, 235 |
| abstract_inverted_index.Our | 211 |
| abstract_inverted_index.The | 133, 166 |
| abstract_inverted_index.VOC | 229 |
| abstract_inverted_index.add | 198 |
| abstract_inverted_index.and | 10, 24, 114, 123, 149, 162, 170, 230 |
| abstract_inverted_index.any | 220 |
| abstract_inverted_index.are | 16, 28, 42, 168, 182 |
| abstract_inverted_index.for | 71, 129, 177 |
| abstract_inverted_index.not | 217 |
| abstract_inverted_index.our | 109, 119 |
| abstract_inverted_index.the | 30, 60, 79, 99, 138, 190, 242, 252 |
| abstract_inverted_index.CLIP | 15, 191 |
| abstract_inverted_index.COCO | 231 |
| abstract_inverted_index.both | 143, 227 |
| abstract_inverted_index.cost | 101 |
| abstract_inverted_index.does | 216 |
| abstract_inverted_index.each | 178 |
| abstract_inverted_index.have | 2 |
| abstract_inverted_index.many | 8, 223 |
| abstract_inverted_index.more | 207 |
| abstract_inverted_index.rely | 218 |
| abstract_inverted_index.show | 236 |
| abstract_inverted_index.step | 201 |
| abstract_inverted_index.such | 13, 64 |
| abstract_inverted_index.task | 80 |
| abstract_inverted_index.text | 160 |
| abstract_inverted_index.that | 47, 202 |
| abstract_inverted_index.them | 49 |
| abstract_inverted_index.then | 183 |
| abstract_inverted_index.this | 56 |
| abstract_inverted_index.used | 19 |
| abstract_inverted_index.very | 237 |
| abstract_inverted_index.with | 50, 94 |
| abstract_inverted_index.(i.e. | 147 |
| abstract_inverted_index.BLIP) | 148 |
| abstract_inverted_index.Image | 39 |
| abstract_inverted_index.These | 180 |
| abstract_inverted_index.avoid | 98 |
| abstract_inverted_index.class | 174 |
| abstract_inverted_index.dense | 72 |
| abstract_inverted_index.focus | 77 |
| abstract_inverted_index.image | 37, 67, 82, 139 |
| abstract_inverted_index.large | 104 |
| abstract_inverted_index.mask. | 210 |
| abstract_inverted_index.masks | 176, 181 |
| abstract_inverted_index.model | 146, 152, 192, 256 |
| abstract_inverted_index.other | 260 |
| abstract_inverted_index.page: | 264 |
| abstract_inverted_index.setup | 110 |
| abstract_inverted_index.terms | 34 |
| abstract_inverted_index.using | 189 |
| abstract_inverted_index.which | 84, 215 |
| abstract_inverted_index.work, | 57 |
| abstract_inverted_index.(i.e., | 153 |
| abstract_inverted_index.Model) | 156 |
| abstract_inverted_index.Models | 12 |
| abstract_inverted_index.Pascal | 228 |
| abstract_inverted_index.Stable | 154 |
| abstract_inverted_index.allows | 203 |
| abstract_inverted_index.beyond | 66 |
| abstract_inverted_index.bridge | 21 |
| abstract_inverted_index.class, | 188 |
| abstract_inverted_index.mapped | 184 |
| abstract_inverted_index.models | 1, 27, 32, 41, 90, 128 |
| abstract_inverted_index.obtain | 173, 205 |
| abstract_inverted_index.passed | 141 |
| abstract_inverted_index.recent | 243 |
| abstract_inverted_index.solved | 87 |
| abstract_inverted_index.tasks. | 11, 75 |
| abstract_inverted_index.visual | 73, 163 |
| abstract_inverted_index.widely | 18 |
| abstract_inverted_index.(dubbed | 213 |
| abstract_inverted_index.Project | 263 |
| abstract_inverted_index.domains | 9 |
| abstract_inverted_index.explore | 59 |
| abstract_inverted_index.leading | 31 |
| abstract_inverted_index.massive | 45 |
| abstract_inverted_index.models, | 106 |
| abstract_inverted_index.models. | 262 |
| abstract_inverted_index.object. | 179 |
| abstract_inverted_index.precise | 208 |
| abstract_inverted_index.provide | 48, 248 |
| abstract_inverted_index.results | 239 |
| abstract_inverted_index.showing | 251 |
| abstract_inverted_index.spatial | 53 |
| abstract_inverted_index.support | 194 |
| abstract_inverted_index.textual | 187 |
| abstract_inverted_index.trained | 43 |
| abstract_inverted_index.Finally, | 196 |
| abstract_inverted_index.agnostic | 175 |
| abstract_inverted_index.approach | 212 |
| abstract_inverted_index.arguably | 29 |
| abstract_inverted_index.benefits | 62 |
| abstract_inverted_index.compared | 240, 258 |
| abstract_inverted_index.datasets | 46 |
| abstract_inverted_index.features | 167, 257 |
| abstract_inverted_index.follows: | 137 |
| abstract_inverted_index.generate | 158 |
| abstract_inverted_index.internal | 52 |
| abstract_inverted_index.pipeline | 120, 134 |
| abstract_inverted_index.powerful | 51 |
| abstract_inverted_index.tackling | 7 |
| abstract_inverted_index.training | 89, 103 |
| abstract_inverted_index.Diffusion | 155 |
| abstract_inverted_index.addition, | 234 |
| abstract_inverted_index.binarized | 171 |
| abstract_inverted_index.captioner | 145 |
| abstract_inverted_index.clustered | 169 |
| abstract_inverted_index.currently | 17 |
| abstract_inverted_index.datasets, | 93 |
| abstract_inverted_index.datasets. | 232 |
| abstract_inverted_index.different | 122 |
| abstract_inverted_index.diffusion | 26, 105, 151, 255 |
| abstract_inverted_index.exhibited | 3 |
| abstract_inverted_index.leverages | 121 |
| abstract_inverted_index.nutshell, | 118 |
| abstract_inverted_index.potential | 61 |
| abstract_inverted_index.realistic | 36 |
| abstract_inverted_index.training, | 221 |
| abstract_inverted_index.zero-shot | 113, 130 |
| abstract_inverted_index.Foundation | 0 |
| abstract_inverted_index.annotation | 100 |
| abstract_inverted_index.approaches | 225 |
| abstract_inverted_index.constraint | 108 |
| abstract_inverted_index.foundation | 127 |
| abstract_inverted_index.generative | 40 |
| abstract_inverted_index.prediction | 74 |
| abstract_inverted_index.pretrained | 261 |
| abstract_inverted_index.refinement | 200 |
| abstract_inverted_index.relatively | 124 |
| abstract_inverted_index.approaches. | 246 |
| abstract_inverted_index.competitive | 238 |
| abstract_inverted_index.cross-modal | 22 |
| abstract_inverted_index.description | 161 |
| abstract_inverted_index.experiments | 250 |
| abstract_inverted_index.generation, | 68 |
| abstract_inverted_index.generation. | 38 |
| abstract_inverted_index.open-source | 126 |
| abstract_inverted_index.outperforms | 222 |
| abstract_inverted_index.particular, | 70 |
| abstract_inverted_index.pixel-level | 95 |
| abstract_inverted_index.superiority | 253 |
| abstract_inverted_index.annotations. | 96 |
| abstract_inverted_index.capabilities | 5 |
| abstract_inverted_index.segmentation | 209, 245 |
| abstract_inverted_index.small-sized, | 125 |
| abstract_inverted_index.comprehensive | 249 |
| abstract_inverted_index.respectively. | 165 |
| abstract_inverted_index.segmentation, | 83 |
| abstract_inverted_index.segmentation. | 132 |
| abstract_inverted_index.text-to-image | 25 |
| abstract_inverted_index.traditionally | 86 |
| abstract_inverted_index.unprecedented | 4 |
| abstract_inverted_index.FreeSeg-Diff), | 214 |
| abstract_inverted_index.training-based | 224 |
| abstract_inverted_index.training-free. | 115 |
| abstract_inverted_index.open-vocabulary | 131 |
| abstract_inverted_index.representation, | 164 |
| abstract_inverted_index.open-vocabulary. | 195 |
| abstract_inverted_index.representations, | 23, 65 |
| abstract_inverted_index.representations. | 54 |
| abstract_inverted_index.closed-vocabulary | 92 |
| abstract_inverted_index.weakly-supervised | 244 |
| abstract_inverted_index.https://bcorrad.github.io/freesegdiff/ | 265 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.00049975 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |