Frequency-Aware Spatial-Temporal Attention Explainable Network for EEG Decoding Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/jbhi.2025.3576088
Representation learning in spatial and temporal domains has shown significant potential in EEG decoding, advancing the field of brain-computer interfaces (BCIs). However, the critical role of frequency information, closely tied to the brain's neurological mechanism, has been largely neglected. In this paper, we propose FSTNet, which integrates frequency-spatial-temporal domains synergistically. The network allows broadband EEG signals as input and adaptively learns informative frequency signatures. A frequency-aware module emphasizes the importance of frequency information by selectively assigning weights to latent representations in the frequency space. Subsequently, self-attention captures spatial and temporal dependencies, extracting discriminative neural signatures for EEG decoding. We conducted extensive experiments on EEG datasets for motor imagery and emotion recognition, achieving superior results on SEED, PhysioNet, and OpenBMI datasets in both individual and cross-subject scenarios. Additionally, visualization reveals that the network captures informative frequency ranges and spatial patterns associated with specific tasks, aligning with known physiological mechanisms. This enhances the transparency of the network's learning process. In conclusion, our method exhibits the potential for decoding EEG and advancing the understanding of neurological processes in the brain.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/jbhi.2025.3576088
- OA Status
- hybrid
- Cited By
- 1
- References
- 49
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410949988
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410949988Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/jbhi.2025.3576088Digital Object Identifier
- Title
-
Frequency-Aware Spatial-Temporal Attention Explainable Network for EEG DecodingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-02Full publication date if available
- Authors
-
Luyao Jin, Yonghao Song, Huan Zhao, Junyi Cao, Vincent C. K. Cheung, Wei‐Hsin LiaoList of authors in order
- Landing page
-
https://doi.org/10.1109/jbhi.2025.3576088Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/jbhi.2025.3576088Direct OA link when available
- Concepts
-
Decoding methods, Computer science, Electroencephalography, Artificial intelligence, Speech recognition, Pattern recognition (psychology), Telecommunications, Neuroscience, PsychologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
49Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410949988 |
|---|---|
| doi | https://doi.org/10.1109/jbhi.2025.3576088 |
| ids.doi | https://doi.org/10.1109/jbhi.2025.3576088 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40456080 |
| ids.openalex | https://openalex.org/W4410949988 |
| fwci | 4.0838049 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | Q000379 |
| mesh[1].descriptor_ui | D004569 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | methods |
| mesh[1].descriptor_name | Electroencephalography |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D012815 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Signal Processing, Computer-Assisted |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D062207 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Brain-Computer Interfaces |
| mesh[4].qualifier_ui | Q000502 |
| mesh[4].descriptor_ui | D001921 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | physiology |
| mesh[4].descriptor_name | Brain |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D016571 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Neural Networks, Computer |
| mesh[6].qualifier_ui | Q000502 |
| mesh[6].descriptor_ui | D004644 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | physiology |
| mesh[6].descriptor_name | Emotions |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D000328 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Adult |
| type | article |
| title | Frequency-Aware Spatial-Temporal Attention Explainable Network for EEG Decoding |
| biblio.issue | 10 |
| biblio.volume | 29 |
| biblio.last_page | 7185 |
| biblio.first_page | 7175 |
| topics[0].id | https://openalex.org/T10429 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9970999956130981 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | EEG and Brain-Computer Interfaces |
| topics[1].id | https://openalex.org/T11021 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9894999861717224 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2705 |
| topics[1].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[1].display_name | ECG Monitoring and Analysis |
| topics[2].id | https://openalex.org/T10241 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9714000225067139 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | Functional Brain Connectivity Studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C57273362 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7344942092895508 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q576722 |
| concepts[0].display_name | Decoding methods |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7302128672599792 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C522805319 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7296345233917236 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q179965 |
| concepts[2].display_name | Electroencephalography |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.45944085717201233 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C28490314 |
| concepts[4].level | 1 |
| concepts[4].score | 0.39451324939727783 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[4].display_name | Speech recognition |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.3530726432800293 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C76155785 |
| concepts[6].level | 1 |
| concepts[6].score | 0.1500345766544342 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[6].display_name | Telecommunications |
| concepts[7].id | https://openalex.org/C169760540 |
| concepts[7].level | 1 |
| concepts[7].score | 0.13863909244537354 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[7].display_name | Neuroscience |
| concepts[8].id | https://openalex.org/C15744967 |
| concepts[8].level | 0 |
| concepts[8].score | 0.1197022795677185 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[8].display_name | Psychology |
| keywords[0].id | https://openalex.org/keywords/decoding-methods |
| keywords[0].score | 0.7344942092895508 |
| keywords[0].display_name | Decoding methods |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7302128672599792 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/electroencephalography |
| keywords[2].score | 0.7296345233917236 |
| keywords[2].display_name | Electroencephalography |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.45944085717201233 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/speech-recognition |
| keywords[4].score | 0.39451324939727783 |
| keywords[4].display_name | Speech recognition |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.3530726432800293 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/telecommunications |
| keywords[6].score | 0.1500345766544342 |
| keywords[6].display_name | Telecommunications |
| keywords[7].id | https://openalex.org/keywords/neuroscience |
| keywords[7].score | 0.13863909244537354 |
| keywords[7].display_name | Neuroscience |
| keywords[8].id | https://openalex.org/keywords/psychology |
| keywords[8].score | 0.1197022795677185 |
| keywords[8].display_name | Psychology |
| language | en |
| locations[0].id | doi:10.1109/jbhi.2025.3576088 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2495854775 |
| locations[0].source.issn | 2168-2194, 2168-2208 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2168-2194 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEEE Journal of Biomedical and Health Informatics |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Journal of Biomedical and Health Informatics |
| locations[0].landing_page_url | https://doi.org/10.1109/jbhi.2025.3576088 |
| locations[1].id | pmid:40456080 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | IEEE journal of biomedical and health informatics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40456080 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5039644705 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Luyao Jin |
| authorships[0].countries | HK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I177725633 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China |
| authorships[0].institutions[0].id | https://openalex.org/I177725633 |
| authorships[0].institutions[0].ror | https://ror.org/00t33hh48 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I177725633 |
| authorships[0].institutions[0].country_code | HK |
| authorships[0].institutions[0].display_name | Chinese University of Hong Kong |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Luyao Jin |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China |
| authorships[1].author.id | https://openalex.org/A5101557904 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1700-1133 |
| authorships[1].author.display_name | Yonghao Song |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China |
| authorships[1].institutions[0].id | https://openalex.org/I99065089 |
| authorships[1].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Tsinghua University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yonghao Song |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China |
| authorships[2].author.id | https://openalex.org/A5011902043 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3133-3137 |
| authorships[2].author.display_name | Huan Zhao |
| authorships[2].countries | HK |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I177725633 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China |
| authorships[2].institutions[0].id | https://openalex.org/I177725633 |
| authorships[2].institutions[0].ror | https://ror.org/00t33hh48 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I177725633 |
| authorships[2].institutions[0].country_code | HK |
| authorships[2].institutions[0].display_name | Chinese University of Hong Kong |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Huan Zhao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China |
| authorships[3].author.id | https://openalex.org/A5089773619 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5025-7838 |
| authorships[3].author.display_name | Junyi Cao |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I87445476 |
| authorships[3].affiliations[0].raw_affiliation_string | Key Laboratory of Education Ministry for Modern Design and Rotor Bearing System, Xi'an Jiaotong University, Xi'an, China |
| authorships[3].institutions[0].id | https://openalex.org/I87445476 |
| authorships[3].institutions[0].ror | https://ror.org/017zhmm22 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I87445476 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Xi'an Jiaotong University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Junyi Cao |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Key Laboratory of Education Ministry for Modern Design and Rotor Bearing System, Xi'an Jiaotong University, Xi'an, China |
| authorships[4].author.id | https://openalex.org/A5058898734 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6031-7320 |
| authorships[4].author.display_name | Vincent C. K. Cheung |
| authorships[4].countries | HK |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I177725633 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China |
| authorships[4].institutions[0].id | https://openalex.org/I177725633 |
| authorships[4].institutions[0].ror | https://ror.org/00t33hh48 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I177725633 |
| authorships[4].institutions[0].country_code | HK |
| authorships[4].institutions[0].display_name | Chinese University of Hong Kong |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Vincent C. K. Cheung |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China |
| authorships[5].author.id | https://openalex.org/A5027148333 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7221-5906 |
| authorships[5].author.display_name | Wei‐Hsin Liao |
| authorships[5].countries | HK |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I177725633 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China |
| authorships[5].institutions[0].id | https://openalex.org/I177725633 |
| authorships[5].institutions[0].ror | https://ror.org/00t33hh48 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I177725633 |
| authorships[5].institutions[0].country_code | HK |
| authorships[5].institutions[0].display_name | Chinese University of Hong Kong |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Wei-Hsin Liao |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/jbhi.2025.3576088 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Frequency-Aware Spatial-Temporal Attention Explainable Network for EEG Decoding |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10429 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9970999956130981 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | EEG and Brain-Computer Interfaces |
| related_works | https://openalex.org/W2922348724, https://openalex.org/W200322357, https://openalex.org/W2130428257, https://openalex.org/W4308951944, https://openalex.org/W2057366091, https://openalex.org/W4312960290, https://openalex.org/W2049513647, https://openalex.org/W2988848585, https://openalex.org/W2033914206, https://openalex.org/W2042327336 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/jbhi.2025.3576088 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2495854775 |
| best_oa_location.source.issn | 2168-2194, 2168-2208 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2168-2194 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | IEEE Journal of Biomedical and Health Informatics |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Journal of Biomedical and Health Informatics |
| best_oa_location.landing_page_url | https://doi.org/10.1109/jbhi.2025.3576088 |
| primary_location.id | doi:10.1109/jbhi.2025.3576088 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2495854775 |
| primary_location.source.issn | 2168-2194, 2168-2208 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2168-2194 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEEE Journal of Biomedical and Health Informatics |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Journal of Biomedical and Health Informatics |
| primary_location.landing_page_url | https://doi.org/10.1109/jbhi.2025.3576088 |
| publication_date | 2025-06-02 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2167030473, https://openalex.org/W4407099082, https://openalex.org/W1972462094, https://openalex.org/W3110151578, https://openalex.org/W4405206745, https://openalex.org/W2953666947, https://openalex.org/W2896655039, https://openalex.org/W4389403336, https://openalex.org/W4304086659, https://openalex.org/W3093125198, https://openalex.org/W4406146170, https://openalex.org/W4312597583, https://openalex.org/W4289538860, https://openalex.org/W4206654584, https://openalex.org/W3082414409, https://openalex.org/W2142858796, https://openalex.org/W2772704314, https://openalex.org/W1947251450, https://openalex.org/W2962905870, https://openalex.org/W2790404832, https://openalex.org/W2894424125, https://openalex.org/W2900786131, https://openalex.org/W2792724009, https://openalex.org/W2986984881, https://openalex.org/W2752782242, https://openalex.org/W4220866631, https://openalex.org/W2912885887, https://openalex.org/W4403390845, https://openalex.org/W3024961463, https://openalex.org/W4399849687, https://openalex.org/W4389262654, https://openalex.org/W2888355470, https://openalex.org/W4312832593, https://openalex.org/W3041051645, https://openalex.org/W4391365584, https://openalex.org/W4406863769, https://openalex.org/W2132360759, https://openalex.org/W4327521769, https://openalex.org/W4286581995, https://openalex.org/W3112227555, https://openalex.org/W2744129140, https://openalex.org/W2270498221, https://openalex.org/W2765507708, https://openalex.org/W2000089809, https://openalex.org/W2154384688, https://openalex.org/W3164439356, https://openalex.org/W2006082701, https://openalex.org/W4404232854, https://openalex.org/W4387477201 |
| referenced_works_count | 49 |
| abstract_inverted_index.A | 64 |
| abstract_inverted_index.In | 39, 157 |
| abstract_inverted_index.We | 98 |
| abstract_inverted_index.as | 56 |
| abstract_inverted_index.by | 73 |
| abstract_inverted_index.in | 2, 11, 80, 120, 174 |
| abstract_inverted_index.of | 17, 25, 70, 152, 171 |
| abstract_inverted_index.on | 102, 114 |
| abstract_inverted_index.to | 30, 77 |
| abstract_inverted_index.we | 42 |
| abstract_inverted_index.EEG | 12, 54, 96, 103, 166 |
| abstract_inverted_index.The | 50 |
| abstract_inverted_index.and | 4, 58, 88, 108, 117, 123, 136, 167 |
| abstract_inverted_index.for | 95, 105, 164 |
| abstract_inverted_index.has | 7, 35 |
| abstract_inverted_index.our | 159 |
| abstract_inverted_index.the | 15, 22, 31, 68, 81, 130, 150, 153, 162, 169, 175 |
| abstract_inverted_index.This | 148 |
| abstract_inverted_index.been | 36 |
| abstract_inverted_index.both | 121 |
| abstract_inverted_index.role | 24 |
| abstract_inverted_index.that | 129 |
| abstract_inverted_index.this | 40 |
| abstract_inverted_index.tied | 29 |
| abstract_inverted_index.with | 140, 144 |
| abstract_inverted_index.SEED, | 115 |
| abstract_inverted_index.field | 16 |
| abstract_inverted_index.input | 57 |
| abstract_inverted_index.known | 145 |
| abstract_inverted_index.motor | 106 |
| abstract_inverted_index.shown | 8 |
| abstract_inverted_index.which | 45 |
| abstract_inverted_index.allows | 52 |
| abstract_inverted_index.brain. | 176 |
| abstract_inverted_index.latent | 78 |
| abstract_inverted_index.learns | 60 |
| abstract_inverted_index.method | 160 |
| abstract_inverted_index.module | 66 |
| abstract_inverted_index.neural | 93 |
| abstract_inverted_index.paper, | 41 |
| abstract_inverted_index.ranges | 135 |
| abstract_inverted_index.space. | 83 |
| abstract_inverted_index.tasks, | 142 |
| abstract_inverted_index.(BCIs). | 20 |
| abstract_inverted_index.FSTNet, | 44 |
| abstract_inverted_index.OpenBMI | 118 |
| abstract_inverted_index.brain's | 32 |
| abstract_inverted_index.closely | 28 |
| abstract_inverted_index.domains | 6, 48 |
| abstract_inverted_index.emotion | 109 |
| abstract_inverted_index.imagery | 107 |
| abstract_inverted_index.largely | 37 |
| abstract_inverted_index.network | 51, 131 |
| abstract_inverted_index.propose | 43 |
| abstract_inverted_index.results | 113 |
| abstract_inverted_index.reveals | 128 |
| abstract_inverted_index.signals | 55 |
| abstract_inverted_index.spatial | 3, 87, 137 |
| abstract_inverted_index.weights | 76 |
| abstract_inverted_index.However, | 21 |
| abstract_inverted_index.aligning | 143 |
| abstract_inverted_index.captures | 86, 132 |
| abstract_inverted_index.critical | 23 |
| abstract_inverted_index.datasets | 104, 119 |
| abstract_inverted_index.decoding | 165 |
| abstract_inverted_index.enhances | 149 |
| abstract_inverted_index.exhibits | 161 |
| abstract_inverted_index.learning | 1, 155 |
| abstract_inverted_index.patterns | 138 |
| abstract_inverted_index.process. | 156 |
| abstract_inverted_index.specific | 141 |
| abstract_inverted_index.superior | 112 |
| abstract_inverted_index.temporal | 5, 89 |
| abstract_inverted_index.achieving | 111 |
| abstract_inverted_index.advancing | 14, 168 |
| abstract_inverted_index.assigning | 75 |
| abstract_inverted_index.broadband | 53 |
| abstract_inverted_index.conducted | 99 |
| abstract_inverted_index.decoding, | 13 |
| abstract_inverted_index.decoding. | 97 |
| abstract_inverted_index.extensive | 100 |
| abstract_inverted_index.frequency | 26, 62, 71, 82, 134 |
| abstract_inverted_index.network's | 154 |
| abstract_inverted_index.potential | 10, 163 |
| abstract_inverted_index.processes | 173 |
| abstract_inverted_index.PhysioNet, | 116 |
| abstract_inverted_index.adaptively | 59 |
| abstract_inverted_index.associated | 139 |
| abstract_inverted_index.emphasizes | 67 |
| abstract_inverted_index.extracting | 91 |
| abstract_inverted_index.importance | 69 |
| abstract_inverted_index.individual | 122 |
| abstract_inverted_index.integrates | 46 |
| abstract_inverted_index.interfaces | 19 |
| abstract_inverted_index.mechanism, | 34 |
| abstract_inverted_index.neglected. | 38 |
| abstract_inverted_index.scenarios. | 125 |
| abstract_inverted_index.signatures | 94 |
| abstract_inverted_index.conclusion, | 158 |
| abstract_inverted_index.experiments | 101 |
| abstract_inverted_index.information | 72 |
| abstract_inverted_index.informative | 61, 133 |
| abstract_inverted_index.mechanisms. | 147 |
| abstract_inverted_index.selectively | 74 |
| abstract_inverted_index.signatures. | 63 |
| abstract_inverted_index.significant | 9 |
| abstract_inverted_index.information, | 27 |
| abstract_inverted_index.neurological | 33, 172 |
| abstract_inverted_index.recognition, | 110 |
| abstract_inverted_index.transparency | 151 |
| abstract_inverted_index.Additionally, | 126 |
| abstract_inverted_index.Subsequently, | 84 |
| abstract_inverted_index.cross-subject | 124 |
| abstract_inverted_index.dependencies, | 90 |
| abstract_inverted_index.physiological | 146 |
| abstract_inverted_index.understanding | 170 |
| abstract_inverted_index.visualization | 127 |
| abstract_inverted_index.Representation | 0 |
| abstract_inverted_index.brain-computer | 18 |
| abstract_inverted_index.discriminative | 92 |
| abstract_inverted_index.self-attention | 85 |
| abstract_inverted_index.frequency-aware | 65 |
| abstract_inverted_index.representations | 79 |
| abstract_inverted_index.synergistically. | 49 |
| abstract_inverted_index.frequency-spatial-temporal | 47 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.86839295 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |