From Actions to Events: A Transfer Learning Approach Using Improved Deep Belief Networks Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1109/ssci50451.2021.9660128
In the last decade, exponential data growth supplied machine learning-based\nalgorithms' capacity and enabled their usage in daily-life activities.\nAdditionally, such an improvement is partially explained due to the advent of\ndeep learning techniques, i.e., stacks of simple architectures that end up in\nmore complex models. Although both factors produce outstanding results, they\nalso pose drawbacks regarding the learning process as training complex models\nover large datasets are expensive and time-consuming. Such a problem is even\nmore evident when dealing with video analysis. Some works have considered\ntransfer learning or domain adaptation, i.e., approaches that map the knowledge\nfrom one domain to another, to ease the training burden, yet most of them\noperate over individual or small blocks of frames. This paper proposes a novel\napproach to map the knowledge from action recognition to event recognition\nusing an energy-based model, denoted as Spectral Deep Belief Network. Such a\nmodel can process all frames simultaneously, carrying spatial and temporal\ninformation through the learning process. The experimental results conducted\nover two public video dataset, the HMDB-51 and the UCF-101, depict the\neffectiveness of the proposed model and its reduced computational burden when\ncompared to traditional energy-based models, such as Restricted Boltzmann\nMachines and Deep Belief Networks.\n
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/ssci50451.2021.9660128
- OA Status
- green
- Cited By
- 2
- References
- 33
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4206939075
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4206939075Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/ssci50451.2021.9660128Digital Object Identifier
- Title
-
From Actions to Events: A Transfer Learning Approach Using Improved Deep Belief NetworksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-12-05Full publication date if available
- Authors
-
Mateus Roder, Jurandy Almeida, Gustavo Henrique de Rosa, Leandro A. Passos, André Luis Debiaso Rossi, João Paulo PapaList of authors in order
- Landing page
-
https://doi.org/10.1109/ssci50451.2021.9660128Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2211.17045Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Machine learning, Deep learning, Transfer of learning, Process (computing), Deep belief network, Boltzmann machine, Action (physics), Adaptation (eye), Domain (mathematical analysis), Restricted Boltzmann machine, Event (particle physics), Domain knowledge, Operating system, Mathematical analysis, Physics, Optics, Mathematics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
33Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4206939075 |
|---|---|
| doi | https://doi.org/10.1109/ssci50451.2021.9660128 |
| ids.doi | https://doi.org/10.1109/ssci50451.2021.9660128 |
| ids.openalex | https://openalex.org/W4206939075 |
| fwci | 0.06334516 |
| type | article |
| title | From Actions to Events: A Transfer Learning Approach Using Improved Deep Belief Networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 08 |
| biblio.first_page | 01 |
| topics[0].id | https://openalex.org/T10812 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Human Pose and Action Recognition |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9986000061035156 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| topics[2].id | https://openalex.org/T11307 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9916999936103821 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Domain Adaptation and Few-Shot Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7792855501174927 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7629319429397583 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C119857082 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6842120885848999 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[2].display_name | Machine learning |
| concepts[3].id | https://openalex.org/C108583219 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6654279232025146 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[3].display_name | Deep learning |
| concepts[4].id | https://openalex.org/C150899416 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6403310298919678 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[4].display_name | Transfer of learning |
| concepts[5].id | https://openalex.org/C98045186 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6352898478507996 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[5].display_name | Process (computing) |
| concepts[6].id | https://openalex.org/C97385483 |
| concepts[6].level | 3 |
| concepts[6].score | 0.6153745651245117 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q16954980 |
| concepts[6].display_name | Deep belief network |
| concepts[7].id | https://openalex.org/C192576344 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5818658471107483 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q194706 |
| concepts[7].display_name | Boltzmann machine |
| concepts[8].id | https://openalex.org/C2780791683 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5035712122917175 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q846785 |
| concepts[8].display_name | Action (physics) |
| concepts[9].id | https://openalex.org/C139807058 |
| concepts[9].level | 2 |
| concepts[9].score | 0.49312636256217957 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q352374 |
| concepts[9].display_name | Adaptation (eye) |
| concepts[10].id | https://openalex.org/C36503486 |
| concepts[10].level | 2 |
| concepts[10].score | 0.49197790026664734 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[10].display_name | Domain (mathematical analysis) |
| concepts[11].id | https://openalex.org/C199354608 |
| concepts[11].level | 3 |
| concepts[11].score | 0.4565427601337433 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7316287 |
| concepts[11].display_name | Restricted Boltzmann machine |
| concepts[12].id | https://openalex.org/C2779662365 |
| concepts[12].level | 2 |
| concepts[12].score | 0.454039990901947 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5416694 |
| concepts[12].display_name | Event (particle physics) |
| concepts[13].id | https://openalex.org/C207685749 |
| concepts[13].level | 2 |
| concepts[13].score | 0.4235427975654602 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2088941 |
| concepts[13].display_name | Domain knowledge |
| concepts[14].id | https://openalex.org/C111919701 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[14].display_name | Operating system |
| concepts[15].id | https://openalex.org/C134306372 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[15].display_name | Mathematical analysis |
| concepts[16].id | https://openalex.org/C121332964 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[16].display_name | Physics |
| concepts[17].id | https://openalex.org/C120665830 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[17].display_name | Optics |
| concepts[18].id | https://openalex.org/C33923547 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[18].display_name | Mathematics |
| concepts[19].id | https://openalex.org/C62520636 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[19].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7792855501174927 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.7629319429397583 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/machine-learning |
| keywords[2].score | 0.6842120885848999 |
| keywords[2].display_name | Machine learning |
| keywords[3].id | https://openalex.org/keywords/deep-learning |
| keywords[3].score | 0.6654279232025146 |
| keywords[3].display_name | Deep learning |
| keywords[4].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[4].score | 0.6403310298919678 |
| keywords[4].display_name | Transfer of learning |
| keywords[5].id | https://openalex.org/keywords/process |
| keywords[5].score | 0.6352898478507996 |
| keywords[5].display_name | Process (computing) |
| keywords[6].id | https://openalex.org/keywords/deep-belief-network |
| keywords[6].score | 0.6153745651245117 |
| keywords[6].display_name | Deep belief network |
| keywords[7].id | https://openalex.org/keywords/boltzmann-machine |
| keywords[7].score | 0.5818658471107483 |
| keywords[7].display_name | Boltzmann machine |
| keywords[8].id | https://openalex.org/keywords/action |
| keywords[8].score | 0.5035712122917175 |
| keywords[8].display_name | Action (physics) |
| keywords[9].id | https://openalex.org/keywords/adaptation |
| keywords[9].score | 0.49312636256217957 |
| keywords[9].display_name | Adaptation (eye) |
| keywords[10].id | https://openalex.org/keywords/domain |
| keywords[10].score | 0.49197790026664734 |
| keywords[10].display_name | Domain (mathematical analysis) |
| keywords[11].id | https://openalex.org/keywords/restricted-boltzmann-machine |
| keywords[11].score | 0.4565427601337433 |
| keywords[11].display_name | Restricted Boltzmann machine |
| keywords[12].id | https://openalex.org/keywords/event |
| keywords[12].score | 0.454039990901947 |
| keywords[12].display_name | Event (particle physics) |
| keywords[13].id | https://openalex.org/keywords/domain-knowledge |
| keywords[13].score | 0.4235427975654602 |
| keywords[13].display_name | Domain knowledge |
| language | en |
| locations[0].id | doi:10.1109/ssci50451.2021.9660128 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4363604921 |
| locations[0].source.issn | |
| locations[0].source.type | conference |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | 2021 IEEE Symposium Series on Computational Intelligence (SSCI) |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2021 IEEE Symposium Series on Computational Intelligence (SSCI) |
| locations[0].landing_page_url | https://doi.org/10.1109/ssci50451.2021.9660128 |
| locations[1].id | pmh:oai:arXiv.org:2211.17045 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2211.17045 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2211.17045 |
| indexed_in | arxiv, crossref |
| authorships[0].author.id | https://openalex.org/A5035837692 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3112-5290 |
| authorships[0].author.display_name | Mateus Roder |
| authorships[0].countries | BR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I879563668 |
| authorships[0].affiliations[0].raw_affiliation_string | São Paulo State University - UNESP, Bauru, Brazil |
| authorships[0].institutions[0].id | https://openalex.org/I879563668 |
| authorships[0].institutions[0].ror | https://ror.org/00987cb86 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I879563668 |
| authorships[0].institutions[0].country_code | BR |
| authorships[0].institutions[0].display_name | Universidade Estadual Paulista (Unesp) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mateus Roder |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | São Paulo State University - UNESP, Bauru, Brazil |
| authorships[1].author.id | https://openalex.org/A5089568142 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4998-6996 |
| authorships[1].author.display_name | Jurandy Almeida |
| authorships[1].countries | BR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I88273585 |
| authorships[1].affiliations[0].raw_affiliation_string | Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo - UNIFESP, São José dos Campos, Brazil |
| authorships[1].institutions[0].id | https://openalex.org/I88273585 |
| authorships[1].institutions[0].ror | https://ror.org/02k5swt12 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I88273585 |
| authorships[1].institutions[0].country_code | BR |
| authorships[1].institutions[0].display_name | Universidade Federal de São Paulo |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jurandy Almeida |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo - UNIFESP, São José dos Campos, Brazil |
| authorships[2].author.id | https://openalex.org/A5082605114 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6442-8343 |
| authorships[2].author.display_name | Gustavo Henrique de Rosa |
| authorships[2].countries | BR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I879563668 |
| authorships[2].affiliations[0].raw_affiliation_string | São Paulo State University - UNESP, Bauru, Brazil |
| authorships[2].institutions[0].id | https://openalex.org/I879563668 |
| authorships[2].institutions[0].ror | https://ror.org/00987cb86 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I879563668 |
| authorships[2].institutions[0].country_code | BR |
| authorships[2].institutions[0].display_name | Universidade Estadual Paulista (Unesp) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Gustavo H. De Rosa |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | São Paulo State University - UNESP, Bauru, Brazil |
| authorships[3].author.id | https://openalex.org/A5041190229 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3529-3109 |
| authorships[3].author.display_name | Leandro A. Passos |
| authorships[3].countries | BR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I879563668 |
| authorships[3].affiliations[0].raw_affiliation_string | São Paulo State University - UNESP, Bauru, Brazil |
| authorships[3].institutions[0].id | https://openalex.org/I879563668 |
| authorships[3].institutions[0].ror | https://ror.org/00987cb86 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I879563668 |
| authorships[3].institutions[0].country_code | BR |
| authorships[3].institutions[0].display_name | Universidade Estadual Paulista (Unesp) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Leandro A. Passos |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | São Paulo State University - UNESP, Bauru, Brazil |
| authorships[4].author.id | https://openalex.org/A5015816735 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6388-7479 |
| authorships[4].author.display_name | André Luis Debiaso Rossi |
| authorships[4].countries | BR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I879563668 |
| authorships[4].affiliations[0].raw_affiliation_string | São Paulo State University - UNESP, Bauru, Brazil |
| authorships[4].institutions[0].id | https://openalex.org/I879563668 |
| authorships[4].institutions[0].ror | https://ror.org/00987cb86 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I879563668 |
| authorships[4].institutions[0].country_code | BR |
| authorships[4].institutions[0].display_name | Universidade Estadual Paulista (Unesp) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Andre L.D. Rossi |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | São Paulo State University - UNESP, Bauru, Brazil |
| authorships[5].author.id | https://openalex.org/A5003275797 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6494-7514 |
| authorships[5].author.display_name | João Paulo Papa |
| authorships[5].countries | BR |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I879563668 |
| authorships[5].affiliations[0].raw_affiliation_string | São Paulo State University - UNESP, Bauru, Brazil |
| authorships[5].institutions[0].id | https://openalex.org/I879563668 |
| authorships[5].institutions[0].ror | https://ror.org/00987cb86 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I879563668 |
| authorships[5].institutions[0].country_code | BR |
| authorships[5].institutions[0].display_name | Universidade Estadual Paulista (Unesp) |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Joao P. Papa |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | São Paulo State University - UNESP, Bauru, Brazil |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2211.17045 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | From Actions to Events: A Transfer Learning Approach Using Improved Deep Belief Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10812 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Human Pose and Action Recognition |
| related_works | https://openalex.org/W2064630666, https://openalex.org/W3121598771, https://openalex.org/W2287713958, https://openalex.org/W2513801676, https://openalex.org/W2916681395, https://openalex.org/W3010338767, https://openalex.org/W1257380361, https://openalex.org/W3005559199, https://openalex.org/W2133034788, https://openalex.org/W2892911634 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2211.17045 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2211.17045 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2211.17045 |
| primary_location.id | doi:10.1109/ssci50451.2021.9660128 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4363604921 |
| primary_location.source.issn | |
| primary_location.source.type | conference |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | 2021 IEEE Symposium Series on Computational Intelligence (SSCI) |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2021 IEEE Symposium Series on Computational Intelligence (SSCI) |
| primary_location.landing_page_url | https://doi.org/10.1109/ssci50451.2021.9660128 |
| publication_date | 2021-12-05 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2964212735, https://openalex.org/W6753333971, https://openalex.org/W2904378456, https://openalex.org/W2990198999, https://openalex.org/W2136922672, https://openalex.org/W2517166312, https://openalex.org/W3094408998, https://openalex.org/W2116064496, https://openalex.org/W2736324721, https://openalex.org/W1967241879, https://openalex.org/W1923404803, https://openalex.org/W2155251704, https://openalex.org/W2126579184, https://openalex.org/W2767787532, https://openalex.org/W2163345210, https://openalex.org/W6631190155, https://openalex.org/W2156710283, https://openalex.org/W2097342496, https://openalex.org/W2103519186, https://openalex.org/W2165715280, https://openalex.org/W2058282129, https://openalex.org/W6752812278, https://openalex.org/W2920565752, https://openalex.org/W2064851185, https://openalex.org/W2141355815, https://openalex.org/W2395579298, https://openalex.org/W6754002923, https://openalex.org/W6600983433, https://openalex.org/W4367551970, https://openalex.org/W1522301498, https://openalex.org/W24089286, https://openalex.org/W4290379497, https://openalex.org/W2887280559 |
| referenced_works_count | 33 |
| abstract_inverted_index.a | 66, 113 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.an | 19, 125 |
| abstract_inverted_index.as | 55, 129, 179 |
| abstract_inverted_index.in | 15 |
| abstract_inverted_index.is | 21, 68 |
| abstract_inverted_index.of | 33, 101, 108, 164 |
| abstract_inverted_index.or | 81, 105 |
| abstract_inverted_index.to | 25, 92, 94, 115, 122, 174 |
| abstract_inverted_index.up | 38 |
| abstract_inverted_index.The | 149 |
| abstract_inverted_index.all | 138 |
| abstract_inverted_index.and | 11, 63, 143, 159, 168, 182 |
| abstract_inverted_index.are | 61 |
| abstract_inverted_index.can | 136 |
| abstract_inverted_index.due | 24 |
| abstract_inverted_index.end | 37 |
| abstract_inverted_index.its | 169 |
| abstract_inverted_index.map | 87, 116 |
| abstract_inverted_index.one | 90 |
| abstract_inverted_index.the | 1, 26, 52, 88, 96, 117, 146, 157, 160, 165 |
| abstract_inverted_index.two | 153 |
| abstract_inverted_index.yet | 99 |
| abstract_inverted_index.Deep | 131, 183 |
| abstract_inverted_index.Some | 76 |
| abstract_inverted_index.Such | 65, 134 |
| abstract_inverted_index.This | 110 |
| abstract_inverted_index.both | 43 |
| abstract_inverted_index.data | 5 |
| abstract_inverted_index.ease | 95 |
| abstract_inverted_index.from | 119 |
| abstract_inverted_index.have | 78 |
| abstract_inverted_index.last | 2 |
| abstract_inverted_index.most | 100 |
| abstract_inverted_index.over | 103 |
| abstract_inverted_index.pose | 49 |
| abstract_inverted_index.such | 18, 178 |
| abstract_inverted_index.that | 36, 86 |
| abstract_inverted_index.when | 71 |
| abstract_inverted_index.with | 73 |
| abstract_inverted_index.event | 123 |
| abstract_inverted_index.i.e., | 31, 84 |
| abstract_inverted_index.large | 59 |
| abstract_inverted_index.model | 167 |
| abstract_inverted_index.paper | 111 |
| abstract_inverted_index.small | 106 |
| abstract_inverted_index.their | 13 |
| abstract_inverted_index.usage | 14 |
| abstract_inverted_index.video | 74, 155 |
| abstract_inverted_index.works | 77 |
| abstract_inverted_index.Belief | 132, 184 |
| abstract_inverted_index.action | 120 |
| abstract_inverted_index.advent | 27 |
| abstract_inverted_index.blocks | 107 |
| abstract_inverted_index.burden | 172 |
| abstract_inverted_index.depict | 162 |
| abstract_inverted_index.domain | 82, 91 |
| abstract_inverted_index.frames | 139 |
| abstract_inverted_index.growth | 6 |
| abstract_inverted_index.model, | 127 |
| abstract_inverted_index.public | 154 |
| abstract_inverted_index.simple | 34 |
| abstract_inverted_index.stacks | 32 |
| abstract_inverted_index.HMDB-51 | 158 |
| abstract_inverted_index.burden, | 98 |
| abstract_inverted_index.complex | 40, 57 |
| abstract_inverted_index.dealing | 72 |
| abstract_inverted_index.decade, | 3 |
| abstract_inverted_index.denoted | 128 |
| abstract_inverted_index.enabled | 12 |
| abstract_inverted_index.evident | 70 |
| abstract_inverted_index.factors | 44 |
| abstract_inverted_index.frames. | 109 |
| abstract_inverted_index.machine | 8 |
| abstract_inverted_index.models, | 177 |
| abstract_inverted_index.models. | 41 |
| abstract_inverted_index.problem | 67 |
| abstract_inverted_index.process | 54, 137 |
| abstract_inverted_index.produce | 45 |
| abstract_inverted_index.reduced | 170 |
| abstract_inverted_index.results | 151 |
| abstract_inverted_index.spatial | 142 |
| abstract_inverted_index.through | 145 |
| abstract_inverted_index.Although | 42 |
| abstract_inverted_index.Network. | 133 |
| abstract_inverted_index.Spectral | 130 |
| abstract_inverted_index.UCF-101, | 161 |
| abstract_inverted_index.a\nmodel | 135 |
| abstract_inverted_index.another, | 93 |
| abstract_inverted_index.capacity | 10 |
| abstract_inverted_index.carrying | 141 |
| abstract_inverted_index.dataset, | 156 |
| abstract_inverted_index.datasets | 60 |
| abstract_inverted_index.in\nmore | 39 |
| abstract_inverted_index.learning | 29, 53, 80, 147 |
| abstract_inverted_index.of\ndeep | 28 |
| abstract_inverted_index.process. | 148 |
| abstract_inverted_index.proposed | 166 |
| abstract_inverted_index.proposes | 112 |
| abstract_inverted_index.results, | 47 |
| abstract_inverted_index.supplied | 7 |
| abstract_inverted_index.training | 56, 97 |
| abstract_inverted_index.analysis. | 75 |
| abstract_inverted_index.drawbacks | 50 |
| abstract_inverted_index.expensive | 62 |
| abstract_inverted_index.explained | 23 |
| abstract_inverted_index.knowledge | 118 |
| abstract_inverted_index.partially | 22 |
| abstract_inverted_index.regarding | 51 |
| abstract_inverted_index.Restricted | 180 |
| abstract_inverted_index.approaches | 85 |
| abstract_inverted_index.daily-life | 16 |
| abstract_inverted_index.even\nmore | 69 |
| abstract_inverted_index.individual | 104 |
| abstract_inverted_index.they\nalso | 48 |
| abstract_inverted_index.Networks.\n | 185 |
| abstract_inverted_index.adaptation, | 83 |
| abstract_inverted_index.exponential | 4 |
| abstract_inverted_index.improvement | 20 |
| abstract_inverted_index.outstanding | 46 |
| abstract_inverted_index.recognition | 121 |
| abstract_inverted_index.techniques, | 30 |
| abstract_inverted_index.traditional | 175 |
| abstract_inverted_index.energy-based | 126, 176 |
| abstract_inverted_index.experimental | 150 |
| abstract_inverted_index.models\nover | 58 |
| abstract_inverted_index.architectures | 35 |
| abstract_inverted_index.computational | 171 |
| abstract_inverted_index.them\noperate | 102 |
| abstract_inverted_index.when\ncompared | 173 |
| abstract_inverted_index.conducted\nover | 152 |
| abstract_inverted_index.knowledge\nfrom | 89 |
| abstract_inverted_index.novel\napproach | 114 |
| abstract_inverted_index.simultaneously, | 140 |
| abstract_inverted_index.time-consuming. | 64 |
| abstract_inverted_index.recognition\nusing | 124 |
| abstract_inverted_index.the\neffectiveness | 163 |
| abstract_inverted_index.Boltzmann\nMachines | 181 |
| abstract_inverted_index.considered\ntransfer | 79 |
| abstract_inverted_index.temporal\ninformation | 144 |
| abstract_inverted_index.activities.\nAdditionally, | 17 |
| abstract_inverted_index.learning-based\nalgorithms' | 9 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.4399999976158142 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.38480392 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |