From Decision Models to Prediction Models: Enhancing Supplier Selection with Machine Learning and Deep Learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.17857004
This study extends the traditional Multi-Criteria Decision-Making (MCDM) framework for supplier selection in circular supply chains by integrating predictive machine learning (ML) and deep learning (DL) models. Conceptually, it bridges the gap between interpretable, theory-driven decision models and powerful, data-driven prediction, proposing a hybrid intelligence framework where MCDM provides the foundational "expert judgment" for ML to learn and automate. Building on a foundational MCDM analysis that ranked 100 raw material suppliers for a Nigerian beverage firm using Weighted Sum (WSM), Weighted Product (WPM), and TOPSIS methods, this study treats the derived composite MCDM score as a target variable for predictive modeling. We implemented and compared several ML models, Linear Regression, Random Forest, XGBoost, and Support Vector Regression (SVR), alongside a Deep Neural Network (DNN) to predict supplier performance. The results revealed that a simple Linear Regression model achieved the highest predictive accuracy (MAE = 0.0103), outperforming more complex ensemble and deep learning models. Feature importance analysis from the Random Forest model confirmed the critical role of Sustainability Efforts and Financial Stability, validating the pre-defined weights in the original MCDM framework. The core conceptual contribution lies in demonstrating a viable pathway "from decision to prediction," establishing a novel, automated pipeline for supplier scoring that learns from expert-derived MCDM rankings. This demonstrates that robust predictive analytics can effectively streamline and enhance supplier evaluation processes in circular supply chains, with simpler models often providing superior performance on structured operational data.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5281/zenodo.17857004
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7111341452
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7111341452Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.17857004Digital Object Identifier
- Title
-
From Decision Models to Prediction Models: Enhancing Supplier Selection with Machine Learning and Deep LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-08Full publication date if available
- Authors
-
OSHODIN, Osamudiamen David, EHICHOYA, MartinsList of authors in order
- Landing page
-
https://doi.org/10.5281/zenodo.17857004Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5281/zenodo.17857004Direct OA link when available
- Concepts
-
Artificial intelligence, Multiple-criteria decision analysis, Machine learning, Computer science, Supply chain, Support vector machine, Random forest, Pipeline (software), Artificial neural network, Deep learning, Feature selection, Decision tree, Predictive analytics, Model selection, Supplier evaluation, Lasso (programming language), Predictive modelling, Decision support system, Selection (genetic algorithm), Evidential reasoning approach, Decision model, Linear model, Gradient boosting, Data mining, Product (mathematics), Ensemble learning, Ensemble forecasting, Big data, Decision analysis, Supply chain management, Linear regression, Regression analysis, Sustainability, Boltzmann machine, AdaBoost, Curse of dimensionality, Principal component analysis, Deep belief network, TOPSISTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7111341452 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.17857004 |
| ids.doi | https://doi.org/10.5281/zenodo.17857004 |
| ids.openalex | https://openalex.org/W7111341452 |
| fwci | 0.0 |
| type | article |
| title | From Decision Models to Prediction Models: Enhancing Supplier Selection with Machine Learning and Deep Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10539 |
| topics[0].field.id | https://openalex.org/fields/14 |
| topics[0].field.display_name | Business, Management and Accounting |
| topics[0].score | 0.5775665044784546 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1408 |
| topics[0].subfield.display_name | Strategy and Management |
| topics[0].display_name | Sustainable Supply Chain Management |
| topics[1].id | https://openalex.org/T11864 |
| topics[1].field.id | https://openalex.org/fields/14 |
| topics[1].field.display_name | Business, Management and Accounting |
| topics[1].score | 0.07991214841604233 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1408 |
| topics[1].subfield.display_name | Strategy and Management |
| topics[1].display_name | Supply Chain Resilience and Risk Management |
| topics[2].id | https://openalex.org/T10050 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.024967879056930542 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1803 |
| topics[2].subfield.display_name | Management Science and Operations Research |
| topics[2].display_name | Multi-Criteria Decision Making |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.721276581287384 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C11105738 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7065027952194214 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1895805 |
| concepts[1].display_name | Multiple-criteria decision analysis |
| concepts[2].id | https://openalex.org/C119857082 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6744970679283142 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[2].display_name | Machine learning |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5971018671989441 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C108713360 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5746439099311829 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1824206 |
| concepts[4].display_name | Supply chain |
| concepts[5].id | https://openalex.org/C12267149 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5601720213890076 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[5].display_name | Support vector machine |
| concepts[6].id | https://openalex.org/C169258074 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5470228791236877 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[6].display_name | Random forest |
| concepts[7].id | https://openalex.org/C43521106 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5313782095909119 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2165493 |
| concepts[7].display_name | Pipeline (software) |
| concepts[8].id | https://openalex.org/C50644808 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5120656490325928 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[8].display_name | Artificial neural network |
| concepts[9].id | https://openalex.org/C108583219 |
| concepts[9].level | 2 |
| concepts[9].score | 0.48935768008232117 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[9].display_name | Deep learning |
| concepts[10].id | https://openalex.org/C148483581 |
| concepts[10].level | 2 |
| concepts[10].score | 0.45120295882225037 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[10].display_name | Feature selection |
| concepts[11].id | https://openalex.org/C84525736 |
| concepts[11].level | 2 |
| concepts[11].score | 0.45097556710243225 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q831366 |
| concepts[11].display_name | Decision tree |
| concepts[12].id | https://openalex.org/C83209312 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4281481206417084 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1053367 |
| concepts[12].display_name | Predictive analytics |
| concepts[13].id | https://openalex.org/C93959086 |
| concepts[13].level | 2 |
| concepts[13].score | 0.40719640254974365 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q6888345 |
| concepts[13].display_name | Model selection |
| concepts[14].id | https://openalex.org/C2778897053 |
| concepts[14].level | 4 |
| concepts[14].score | 0.40153878927230835 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q125783 |
| concepts[14].display_name | Supplier evaluation |
| concepts[15].id | https://openalex.org/C37616216 |
| concepts[15].level | 2 |
| concepts[15].score | 0.3984772562980652 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q3218363 |
| concepts[15].display_name | Lasso (programming language) |
| concepts[16].id | https://openalex.org/C45804977 |
| concepts[16].level | 2 |
| concepts[16].score | 0.3793680667877197 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7239673 |
| concepts[16].display_name | Predictive modelling |
| concepts[17].id | https://openalex.org/C107327155 |
| concepts[17].level | 2 |
| concepts[17].score | 0.3741285800933838 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q330268 |
| concepts[17].display_name | Decision support system |
| concepts[18].id | https://openalex.org/C81917197 |
| concepts[18].level | 2 |
| concepts[18].score | 0.3567066192626953 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[18].display_name | Selection (genetic algorithm) |
| concepts[19].id | https://openalex.org/C156201811 |
| concepts[19].level | 4 |
| concepts[19].score | 0.3507462739944458 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q5418360 |
| concepts[19].display_name | Evidential reasoning approach |
| concepts[20].id | https://openalex.org/C59594135 |
| concepts[20].level | 2 |
| concepts[20].score | 0.3363765776157379 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q5249242 |
| concepts[20].display_name | Decision model |
| concepts[21].id | https://openalex.org/C163175372 |
| concepts[21].level | 2 |
| concepts[21].score | 0.3356252908706665 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q3339222 |
| concepts[21].display_name | Linear model |
| concepts[22].id | https://openalex.org/C70153297 |
| concepts[22].level | 3 |
| concepts[22].score | 0.3350018858909607 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q5591907 |
| concepts[22].display_name | Gradient boosting |
| concepts[23].id | https://openalex.org/C124101348 |
| concepts[23].level | 1 |
| concepts[23].score | 0.3293550908565521 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[23].display_name | Data mining |
| concepts[24].id | https://openalex.org/C90673727 |
| concepts[24].level | 2 |
| concepts[24].score | 0.3224560022354126 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q901718 |
| concepts[24].display_name | Product (mathematics) |
| concepts[25].id | https://openalex.org/C45942800 |
| concepts[25].level | 2 |
| concepts[25].score | 0.32244017720222473 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q245652 |
| concepts[25].display_name | Ensemble learning |
| concepts[26].id | https://openalex.org/C119898033 |
| concepts[26].level | 2 |
| concepts[26].score | 0.3152705430984497 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q3433888 |
| concepts[26].display_name | Ensemble forecasting |
| concepts[27].id | https://openalex.org/C75684735 |
| concepts[27].level | 2 |
| concepts[27].score | 0.30605819821357727 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q858810 |
| concepts[27].display_name | Big data |
| concepts[28].id | https://openalex.org/C186116695 |
| concepts[28].level | 2 |
| concepts[28].score | 0.3027239739894867 |
| concepts[28].wikidata | https://www.wikidata.org/wiki/Q5249226 |
| concepts[28].display_name | Decision analysis |
| concepts[29].id | https://openalex.org/C44104985 |
| concepts[29].level | 3 |
| concepts[29].score | 0.2916252911090851 |
| concepts[29].wikidata | https://www.wikidata.org/wiki/Q492886 |
| concepts[29].display_name | Supply chain management |
| concepts[30].id | https://openalex.org/C48921125 |
| concepts[30].level | 2 |
| concepts[30].score | 0.29039430618286133 |
| concepts[30].wikidata | https://www.wikidata.org/wiki/Q10861030 |
| concepts[30].display_name | Linear regression |
| concepts[31].id | https://openalex.org/C152877465 |
| concepts[31].level | 2 |
| concepts[31].score | 0.2822653353214264 |
| concepts[31].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[31].display_name | Regression analysis |
| concepts[32].id | https://openalex.org/C66204764 |
| concepts[32].level | 2 |
| concepts[32].score | 0.2764747142791748 |
| concepts[32].wikidata | https://www.wikidata.org/wiki/Q219416 |
| concepts[32].display_name | Sustainability |
| concepts[33].id | https://openalex.org/C192576344 |
| concepts[33].level | 3 |
| concepts[33].score | 0.27341216802597046 |
| concepts[33].wikidata | https://www.wikidata.org/wiki/Q194706 |
| concepts[33].display_name | Boltzmann machine |
| concepts[34].id | https://openalex.org/C141404830 |
| concepts[34].level | 3 |
| concepts[34].score | 0.26743897795677185 |
| concepts[34].wikidata | https://www.wikidata.org/wiki/Q2823869 |
| concepts[34].display_name | AdaBoost |
| concepts[35].id | https://openalex.org/C111030470 |
| concepts[35].level | 2 |
| concepts[35].score | 0.2641932964324951 |
| concepts[35].wikidata | https://www.wikidata.org/wiki/Q1430460 |
| concepts[35].display_name | Curse of dimensionality |
| concepts[36].id | https://openalex.org/C27438332 |
| concepts[36].level | 2 |
| concepts[36].score | 0.2612517476081848 |
| concepts[36].wikidata | https://www.wikidata.org/wiki/Q2873 |
| concepts[36].display_name | Principal component analysis |
| concepts[37].id | https://openalex.org/C97385483 |
| concepts[37].level | 3 |
| concepts[37].score | 0.2590271234512329 |
| concepts[37].wikidata | https://www.wikidata.org/wiki/Q16954980 |
| concepts[37].display_name | Deep belief network |
| concepts[38].id | https://openalex.org/C51566761 |
| concepts[38].level | 2 |
| concepts[38].score | 0.25840821862220764 |
| concepts[38].wikidata | https://www.wikidata.org/wiki/Q1235853 |
| concepts[38].display_name | TOPSIS |
| keywords[0].id | https://openalex.org/keywords/multiple-criteria-decision-analysis |
| keywords[0].score | 0.7065027952194214 |
| keywords[0].display_name | Multiple-criteria decision analysis |
| keywords[1].id | https://openalex.org/keywords/supply-chain |
| keywords[1].score | 0.5746439099311829 |
| keywords[1].display_name | Supply chain |
| keywords[2].id | https://openalex.org/keywords/support-vector-machine |
| keywords[2].score | 0.5601720213890076 |
| keywords[2].display_name | Support vector machine |
| keywords[3].id | https://openalex.org/keywords/random-forest |
| keywords[3].score | 0.5470228791236877 |
| keywords[3].display_name | Random forest |
| keywords[4].id | https://openalex.org/keywords/pipeline |
| keywords[4].score | 0.5313782095909119 |
| keywords[4].display_name | Pipeline (software) |
| keywords[5].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[5].score | 0.5120656490325928 |
| keywords[5].display_name | Artificial neural network |
| keywords[6].id | https://openalex.org/keywords/deep-learning |
| keywords[6].score | 0.48935768008232117 |
| keywords[6].display_name | Deep learning |
| keywords[7].id | https://openalex.org/keywords/feature-selection |
| keywords[7].score | 0.45120295882225037 |
| keywords[7].display_name | Feature selection |
| keywords[8].id | https://openalex.org/keywords/decision-tree |
| keywords[8].score | 0.45097556710243225 |
| keywords[8].display_name | Decision tree |
| keywords[9].id | https://openalex.org/keywords/predictive-analytics |
| keywords[9].score | 0.4281481206417084 |
| keywords[9].display_name | Predictive analytics |
| language | en |
| locations[0].id | doi:10.5281/zenodo.17857004 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article-journal |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5281/zenodo.17857004 |
| indexed_in | datacite |
| authorships[0].author.id | |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | OSHODIN, Osamudiamen David |
| authorships[0].countries | NG |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I6406202 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Engineering Faculty of Engineering, University of Benin, Edo State, Nigeria |
| authorships[0].institutions[0].id | https://openalex.org/I6406202 |
| authorships[0].institutions[0].ror | https://ror.org/04mznrw11 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I6406202 |
| authorships[0].institutions[0].country_code | NG |
| authorships[0].institutions[0].display_name | University of Benin |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | OSHODIN, Osamudiamen David |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Computer Engineering Faculty of Engineering, University of Benin, Edo State, Nigeria |
| authorships[1].author.id | |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | EHICHOYA, Martins |
| authorships[1].countries | NG |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I6406202 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Business Administration, Faculty of Management Sciences, University of Benin, Edo State, Nigeria |
| authorships[1].institutions[0].id | https://openalex.org/I6406202 |
| authorships[1].institutions[0].ror | https://ror.org/04mznrw11 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I6406202 |
| authorships[1].institutions[0].country_code | NG |
| authorships[1].institutions[0].display_name | University of Benin |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | EHICHOYA, Martins |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Business Administration, Faculty of Management Sciences, University of Benin, Edo State, Nigeria |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5281/zenodo.17857004 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-10T00:00:00 |
| display_name | From Decision Models to Prediction Models: Enhancing Supplier Selection with Machine Learning and Deep Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-10T02:49:46.989445 |
| primary_topic.id | https://openalex.org/T10539 |
| primary_topic.field.id | https://openalex.org/fields/14 |
| primary_topic.field.display_name | Business, Management and Accounting |
| primary_topic.score | 0.5775665044784546 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1408 |
| primary_topic.subfield.display_name | Strategy and Management |
| primary_topic.display_name | Sustainable Supply Chain Management |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5281/zenodo.17857004 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article-journal |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5281/zenodo.17857004 |
| primary_location.id | doi:10.5281/zenodo.17857004 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article-journal |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5281/zenodo.17857004 |
| publication_date | 2025-12-08 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.= | 143 |
| abstract_inverted_index.a | 42, 61, 72, 95, 119, 132, 187, 195 |
| abstract_inverted_index.ML | 54, 106 |
| abstract_inverted_index.We | 101 |
| abstract_inverted_index.as | 94 |
| abstract_inverted_index.by | 16 |
| abstract_inverted_index.in | 12, 175, 185, 222 |
| abstract_inverted_index.it | 28 |
| abstract_inverted_index.of | 165 |
| abstract_inverted_index.on | 60, 233 |
| abstract_inverted_index.to | 55, 124, 192 |
| abstract_inverted_index.100 | 67 |
| abstract_inverted_index.Sum | 78 |
| abstract_inverted_index.The | 128, 180 |
| abstract_inverted_index.and | 22, 37, 57, 83, 103, 113, 149, 168, 217 |
| abstract_inverted_index.can | 214 |
| abstract_inverted_index.for | 9, 53, 71, 98, 199 |
| abstract_inverted_index.gap | 31 |
| abstract_inverted_index.raw | 68 |
| abstract_inverted_index.the | 3, 30, 49, 89, 138, 157, 162, 172, 176 |
| abstract_inverted_index.(DL) | 25 |
| abstract_inverted_index.(MAE | 142 |
| abstract_inverted_index.(ML) | 21 |
| abstract_inverted_index.Deep | 120 |
| abstract_inverted_index.MCDM | 47, 63, 92, 178, 206 |
| abstract_inverted_index.This | 0, 208 |
| abstract_inverted_index.core | 181 |
| abstract_inverted_index.deep | 23, 150 |
| abstract_inverted_index.firm | 75 |
| abstract_inverted_index.from | 156, 204 |
| abstract_inverted_index.lies | 184 |
| abstract_inverted_index.more | 146 |
| abstract_inverted_index.role | 164 |
| abstract_inverted_index.that | 65, 131, 202, 210 |
| abstract_inverted_index.this | 86 |
| abstract_inverted_index.with | 226 |
| abstract_inverted_index."from | 190 |
| abstract_inverted_index.(DNN) | 123 |
| abstract_inverted_index.data. | 236 |
| abstract_inverted_index.learn | 56 |
| abstract_inverted_index.model | 136, 160 |
| abstract_inverted_index.often | 229 |
| abstract_inverted_index.score | 93 |
| abstract_inverted_index.study | 1, 87 |
| abstract_inverted_index.using | 76 |
| abstract_inverted_index.where | 46 |
| abstract_inverted_index.(MCDM) | 7 |
| abstract_inverted_index.(SVR), | 117 |
| abstract_inverted_index.(WPM), | 82 |
| abstract_inverted_index.(WSM), | 79 |
| abstract_inverted_index.Forest | 159 |
| abstract_inverted_index.Linear | 108, 134 |
| abstract_inverted_index.Neural | 121 |
| abstract_inverted_index.Random | 110, 158 |
| abstract_inverted_index.TOPSIS | 84 |
| abstract_inverted_index.Vector | 115 |
| abstract_inverted_index.chains | 15 |
| abstract_inverted_index.hybrid | 43 |
| abstract_inverted_index.learns | 203 |
| abstract_inverted_index.models | 36, 228 |
| abstract_inverted_index.novel, | 196 |
| abstract_inverted_index.ranked | 66 |
| abstract_inverted_index.robust | 211 |
| abstract_inverted_index.simple | 133 |
| abstract_inverted_index.supply | 14, 224 |
| abstract_inverted_index.target | 96 |
| abstract_inverted_index.treats | 88 |
| abstract_inverted_index.viable | 188 |
| abstract_inverted_index."expert | 51 |
| abstract_inverted_index.Efforts | 167 |
| abstract_inverted_index.Feature | 153 |
| abstract_inverted_index.Forest, | 111 |
| abstract_inverted_index.Network | 122 |
| abstract_inverted_index.Product | 81 |
| abstract_inverted_index.Support | 114 |
| abstract_inverted_index.between | 32 |
| abstract_inverted_index.bridges | 29 |
| abstract_inverted_index.chains, | 225 |
| abstract_inverted_index.complex | 147 |
| abstract_inverted_index.derived | 90 |
| abstract_inverted_index.enhance | 218 |
| abstract_inverted_index.extends | 2 |
| abstract_inverted_index.highest | 139 |
| abstract_inverted_index.machine | 19 |
| abstract_inverted_index.models, | 107 |
| abstract_inverted_index.models. | 26, 152 |
| abstract_inverted_index.pathway | 189 |
| abstract_inverted_index.predict | 125 |
| abstract_inverted_index.results | 129 |
| abstract_inverted_index.scoring | 201 |
| abstract_inverted_index.several | 105 |
| abstract_inverted_index.simpler | 227 |
| abstract_inverted_index.weights | 174 |
| abstract_inverted_index.0.0103), | 144 |
| abstract_inverted_index.Building | 59 |
| abstract_inverted_index.Nigerian | 73 |
| abstract_inverted_index.Weighted | 77, 80 |
| abstract_inverted_index.XGBoost, | 112 |
| abstract_inverted_index.accuracy | 141 |
| abstract_inverted_index.achieved | 137 |
| abstract_inverted_index.analysis | 64, 155 |
| abstract_inverted_index.beverage | 74 |
| abstract_inverted_index.circular | 13, 223 |
| abstract_inverted_index.compared | 104 |
| abstract_inverted_index.critical | 163 |
| abstract_inverted_index.decision | 35, 191 |
| abstract_inverted_index.ensemble | 148 |
| abstract_inverted_index.learning | 20, 24, 151 |
| abstract_inverted_index.material | 69 |
| abstract_inverted_index.methods, | 85 |
| abstract_inverted_index.original | 177 |
| abstract_inverted_index.pipeline | 198 |
| abstract_inverted_index.provides | 48 |
| abstract_inverted_index.revealed | 130 |
| abstract_inverted_index.superior | 231 |
| abstract_inverted_index.supplier | 10, 126, 200, 219 |
| abstract_inverted_index.variable | 97 |
| abstract_inverted_index.Financial | 169 |
| abstract_inverted_index.alongside | 118 |
| abstract_inverted_index.analytics | 213 |
| abstract_inverted_index.automate. | 58 |
| abstract_inverted_index.automated | 197 |
| abstract_inverted_index.composite | 91 |
| abstract_inverted_index.confirmed | 161 |
| abstract_inverted_index.framework | 8, 45 |
| abstract_inverted_index.judgment" | 52 |
| abstract_inverted_index.modeling. | 100 |
| abstract_inverted_index.powerful, | 38 |
| abstract_inverted_index.processes | 221 |
| abstract_inverted_index.proposing | 41 |
| abstract_inverted_index.providing | 230 |
| abstract_inverted_index.rankings. | 207 |
| abstract_inverted_index.selection | 11 |
| abstract_inverted_index.suppliers | 70 |
| abstract_inverted_index.Regression | 116, 135 |
| abstract_inverted_index.Stability, | 170 |
| abstract_inverted_index.conceptual | 182 |
| abstract_inverted_index.evaluation | 220 |
| abstract_inverted_index.framework. | 179 |
| abstract_inverted_index.importance | 154 |
| abstract_inverted_index.predictive | 18, 99, 140, 212 |
| abstract_inverted_index.streamline | 216 |
| abstract_inverted_index.structured | 234 |
| abstract_inverted_index.validating | 171 |
| abstract_inverted_index.Regression, | 109 |
| abstract_inverted_index.data-driven | 39 |
| abstract_inverted_index.effectively | 215 |
| abstract_inverted_index.implemented | 102 |
| abstract_inverted_index.integrating | 17 |
| abstract_inverted_index.operational | 235 |
| abstract_inverted_index.performance | 232 |
| abstract_inverted_index.pre-defined | 173 |
| abstract_inverted_index.prediction, | 40 |
| abstract_inverted_index.traditional | 4 |
| abstract_inverted_index.contribution | 183 |
| abstract_inverted_index.demonstrates | 209 |
| abstract_inverted_index.establishing | 194 |
| abstract_inverted_index.foundational | 50, 62 |
| abstract_inverted_index.intelligence | 44 |
| abstract_inverted_index.performance. | 127 |
| abstract_inverted_index.prediction," | 193 |
| abstract_inverted_index.Conceptually, | 27 |
| abstract_inverted_index.demonstrating | 186 |
| abstract_inverted_index.outperforming | 145 |
| abstract_inverted_index.theory-driven | 34 |
| abstract_inverted_index.Multi-Criteria | 5 |
| abstract_inverted_index.Sustainability | 166 |
| abstract_inverted_index.expert-derived | 205 |
| abstract_inverted_index.interpretable, | 33 |
| abstract_inverted_index.Decision-Making | 6 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.86332923 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |