From Dense to Dynamic: Token-Difficulty Driven MoEfication of Pre-Trained LLMs Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2502.12325
Training large language models (LLMs) for different inference constraints is computationally expensive, limiting control over efficiency-accuracy trade-offs. Moreover, once trained, these models typically process tokens uniformly, regardless of their complexity, leading to static and inflexible behavior. In this paper, we introduce a post-training optimization framework, DynaMoE, that adapts a pre-trained dense LLM to a token-difficulty-driven Mixture-of-Experts model with minimal fine-tuning cost. This adaptation makes the model dynamic, with sensitivity control to customize the balance between efficiency and accuracy. DynaMoE features a token-difficulty-aware router that predicts the difficulty of tokens and directs them to the appropriate sub-networks or experts, enabling larger experts to handle more complex tokens and smaller experts to process simpler ones. Our experiments demonstrate that DynaMoE can generate a range of adaptive model variants of the existing trained LLM with a single fine-tuning step, utilizing only $10B$ tokens, a minimal cost compared to the base model's training. Each variant offers distinct trade-offs between accuracy and performance. Compared to the baseline post-training optimization framework, Flextron, our method achieves similar aggregated accuracy across downstream tasks, despite using only $\frac{1}{9}\text{th}$ of their fine-tuning cost.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2502.12325
- https://arxiv.org/pdf/2502.12325
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407759271
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407759271Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2502.12325Digital Object Identifier
- Title
-
From Dense to Dynamic: Token-Difficulty Driven MoEfication of Pre-Trained LLMsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-17Full publication date if available
- Authors
-
Kumari Nishu, Sachin Mehta, Samira Abnar, Mehrdad Farajtabar, Maxwell Horton, Mahyar Najibi, Moin Nabi, Minsik Cho, Devang NaikList of authors in order
- Landing page
-
https://arxiv.org/abs/2502.12325Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2502.12325Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2502.12325Direct OA link when available
- Concepts
-
Security token, Computer science, Computer securityTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407759271 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2502.12325 |
| ids.doi | https://doi.org/10.48550/arxiv.2502.12325 |
| ids.openalex | https://openalex.org/W4407759271 |
| fwci | |
| type | preprint |
| title | From Dense to Dynamic: Token-Difficulty Driven MoEfication of Pre-Trained LLMs |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13999 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8486999869346619 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Digital Rights Management and Security |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C48145219 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5452329516410828 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1335365 |
| concepts[0].display_name | Security token |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.38676324486732483 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C38652104 |
| concepts[2].level | 1 |
| concepts[2].score | 0.21857863664627075 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[2].display_name | Computer security |
| keywords[0].id | https://openalex.org/keywords/security-token |
| keywords[0].score | 0.5452329516410828 |
| keywords[0].display_name | Security token |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.38676324486732483 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/computer-security |
| keywords[2].score | 0.21857863664627075 |
| keywords[2].display_name | Computer security |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2502.12325 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2502.12325 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2502.12325 |
| locations[1].id | doi:10.48550/arxiv.2502.12325 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2502.12325 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5116335658 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Kumari Nishu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nishu, Kumari |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5074132108 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5420-4725 |
| authorships[1].author.display_name | Sachin Mehta |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mehta, Sachin |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5116335659 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Samira Abnar |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Abnar, Samira |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5050499655 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5510-518X |
| authorships[3].author.display_name | Mehrdad Farajtabar |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Farajtabar, Mehrdad |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5012428670 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Maxwell Horton |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Horton, Maxwell |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5021900923 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Mahyar Najibi |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Najibi, Mahyar |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5001459748 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-7559-9888 |
| authorships[6].author.display_name | Moin Nabi |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Nabi, Moin |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5115076654 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-0481-2682 |
| authorships[7].author.display_name | Minsik Cho |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Cho, Minsik |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5113880378 |
| authorships[8].author.orcid | https://orcid.org/0009-0007-7838-1623 |
| authorships[8].author.display_name | Devang Naik |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Naik, Devang |
| authorships[8].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2502.12325 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | From Dense to Dynamic: Token-Difficulty Driven MoEfication of Pre-Trained LLMs |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T13999 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8486999869346619 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Digital Rights Management and Security |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W4388335561, https://openalex.org/W2970530566, https://openalex.org/W4288261899, https://openalex.org/W4307309205, https://openalex.org/W2967478618, https://openalex.org/W4385009901, https://openalex.org/W4385572700 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2502.12325 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2502.12325 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2502.12325 |
| primary_location.id | pmh:oai:arXiv.org:2502.12325 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2502.12325 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2502.12325 |
| publication_date | 2025-02-17 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 41, 48, 53, 80, 120, 132, 140 |
| abstract_inverted_index.In | 36 |
| abstract_inverted_index.is | 9 |
| abstract_inverted_index.of | 27, 87, 122, 126, 179 |
| abstract_inverted_index.or | 96 |
| abstract_inverted_index.to | 31, 52, 70, 92, 101, 109, 144, 159 |
| abstract_inverted_index.we | 39 |
| abstract_inverted_index.LLM | 51, 130 |
| abstract_inverted_index.Our | 113 |
| abstract_inverted_index.and | 33, 76, 89, 106, 156 |
| abstract_inverted_index.can | 118 |
| abstract_inverted_index.for | 5 |
| abstract_inverted_index.our | 166 |
| abstract_inverted_index.the | 64, 72, 85, 93, 127, 145, 160 |
| abstract_inverted_index.Each | 149 |
| abstract_inverted_index.This | 61 |
| abstract_inverted_index.base | 146 |
| abstract_inverted_index.cost | 142 |
| abstract_inverted_index.more | 103 |
| abstract_inverted_index.once | 18 |
| abstract_inverted_index.only | 137, 177 |
| abstract_inverted_index.over | 14 |
| abstract_inverted_index.that | 46, 83, 116 |
| abstract_inverted_index.them | 91 |
| abstract_inverted_index.this | 37 |
| abstract_inverted_index.with | 57, 67, 131 |
| abstract_inverted_index.$10B$ | 138 |
| abstract_inverted_index.cost. | 60, 182 |
| abstract_inverted_index.dense | 50 |
| abstract_inverted_index.large | 1 |
| abstract_inverted_index.makes | 63 |
| abstract_inverted_index.model | 56, 65, 124 |
| abstract_inverted_index.ones. | 112 |
| abstract_inverted_index.range | 121 |
| abstract_inverted_index.step, | 135 |
| abstract_inverted_index.their | 28, 180 |
| abstract_inverted_index.these | 20 |
| abstract_inverted_index.using | 176 |
| abstract_inverted_index.(LLMs) | 4 |
| abstract_inverted_index.across | 172 |
| abstract_inverted_index.adapts | 47 |
| abstract_inverted_index.handle | 102 |
| abstract_inverted_index.larger | 99 |
| abstract_inverted_index.method | 167 |
| abstract_inverted_index.models | 3, 21 |
| abstract_inverted_index.offers | 151 |
| abstract_inverted_index.paper, | 38 |
| abstract_inverted_index.router | 82 |
| abstract_inverted_index.single | 133 |
| abstract_inverted_index.static | 32 |
| abstract_inverted_index.tasks, | 174 |
| abstract_inverted_index.tokens | 24, 88, 105 |
| abstract_inverted_index.DynaMoE | 78, 117 |
| abstract_inverted_index.balance | 73 |
| abstract_inverted_index.between | 74, 154 |
| abstract_inverted_index.complex | 104 |
| abstract_inverted_index.control | 13, 69 |
| abstract_inverted_index.despite | 175 |
| abstract_inverted_index.directs | 90 |
| abstract_inverted_index.experts | 100, 108 |
| abstract_inverted_index.leading | 30 |
| abstract_inverted_index.minimal | 58, 141 |
| abstract_inverted_index.model's | 147 |
| abstract_inverted_index.process | 23, 110 |
| abstract_inverted_index.similar | 169 |
| abstract_inverted_index.simpler | 111 |
| abstract_inverted_index.smaller | 107 |
| abstract_inverted_index.tokens, | 139 |
| abstract_inverted_index.trained | 129 |
| abstract_inverted_index.variant | 150 |
| abstract_inverted_index.Compared | 158 |
| abstract_inverted_index.DynaMoE, | 45 |
| abstract_inverted_index.Training | 0 |
| abstract_inverted_index.accuracy | 155, 171 |
| abstract_inverted_index.achieves | 168 |
| abstract_inverted_index.adaptive | 123 |
| abstract_inverted_index.baseline | 161 |
| abstract_inverted_index.compared | 143 |
| abstract_inverted_index.distinct | 152 |
| abstract_inverted_index.dynamic, | 66 |
| abstract_inverted_index.enabling | 98 |
| abstract_inverted_index.existing | 128 |
| abstract_inverted_index.experts, | 97 |
| abstract_inverted_index.features | 79 |
| abstract_inverted_index.generate | 119 |
| abstract_inverted_index.language | 2 |
| abstract_inverted_index.limiting | 12 |
| abstract_inverted_index.predicts | 84 |
| abstract_inverted_index.trained, | 19 |
| abstract_inverted_index.variants | 125 |
| abstract_inverted_index.Flextron, | 165 |
| abstract_inverted_index.Moreover, | 17 |
| abstract_inverted_index.accuracy. | 77 |
| abstract_inverted_index.behavior. | 35 |
| abstract_inverted_index.customize | 71 |
| abstract_inverted_index.different | 6 |
| abstract_inverted_index.inference | 7 |
| abstract_inverted_index.introduce | 40 |
| abstract_inverted_index.training. | 148 |
| abstract_inverted_index.typically | 22 |
| abstract_inverted_index.utilizing | 136 |
| abstract_inverted_index.adaptation | 62 |
| abstract_inverted_index.aggregated | 170 |
| abstract_inverted_index.difficulty | 86 |
| abstract_inverted_index.downstream | 173 |
| abstract_inverted_index.efficiency | 75 |
| abstract_inverted_index.expensive, | 11 |
| abstract_inverted_index.framework, | 44, 164 |
| abstract_inverted_index.inflexible | 34 |
| abstract_inverted_index.regardless | 26 |
| abstract_inverted_index.trade-offs | 153 |
| abstract_inverted_index.uniformly, | 25 |
| abstract_inverted_index.appropriate | 94 |
| abstract_inverted_index.complexity, | 29 |
| abstract_inverted_index.constraints | 8 |
| abstract_inverted_index.demonstrate | 115 |
| abstract_inverted_index.experiments | 114 |
| abstract_inverted_index.fine-tuning | 59, 134, 181 |
| abstract_inverted_index.pre-trained | 49 |
| abstract_inverted_index.sensitivity | 68 |
| abstract_inverted_index.trade-offs. | 16 |
| abstract_inverted_index.optimization | 43, 163 |
| abstract_inverted_index.performance. | 157 |
| abstract_inverted_index.sub-networks | 95 |
| abstract_inverted_index.post-training | 42, 162 |
| abstract_inverted_index.computationally | 10 |
| abstract_inverted_index.Mixture-of-Experts | 55 |
| abstract_inverted_index.efficiency-accuracy | 15 |
| abstract_inverted_index.$\frac{1}{9}\text{th}$ | 178 |
| abstract_inverted_index.token-difficulty-aware | 81 |
| abstract_inverted_index.token-difficulty-driven | 54 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile |