From Failures to Fixes: LLM-Driven Scenario Repair for Self-Evolving Autonomous Driving Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2505.22067
Ensuring robust and generalizable autonomous driving requires not only broad scenario coverage but also efficient repair of failure cases, particularly those related to challenging and safety-critical scenarios. However, existing scenario generation and selection methods often lack adaptivity and semantic relevance, limiting their impact on performance improvement. In this paper, we propose \textbf{SERA}, an LLM-powered framework that enables autonomous driving systems to self-evolve by repairing failure cases through targeted scenario recommendation. By analyzing performance logs, SERA identifies failure patterns and dynamically retrieves semantically aligned scenarios from a structured bank. An LLM-based reflection mechanism further refines these recommendations to maximize relevance and diversity. The selected scenarios are used for few-shot fine-tuning, enabling targeted adaptation with minimal data. Experiments on the benchmark show that SERA consistently improves key metrics across multiple autonomous driving baselines, demonstrating its effectiveness and generalizability under safety-critical conditions.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2505.22067
- https://arxiv.org/pdf/2505.22067
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416047818
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416047818Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2505.22067Digital Object Identifier
- Title
-
From Failures to Fixes: LLM-Driven Scenario Repair for Self-Evolving Autonomous DrivingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-28Full publication date if available
- Authors
-
Xin Xia, Xingjun Ma, Dafang Zhuang, Ting Qu, Chen Hong, Xun GongList of authors in order
- Landing page
-
https://arxiv.org/abs/2505.22067Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2505.22067Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2505.22067Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416047818 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2505.22067 |
| ids.doi | https://doi.org/10.48550/arxiv.2505.22067 |
| ids.openalex | https://openalex.org/W4416047818 |
| fwci | |
| type | preprint |
| title | From Failures to Fixes: LLM-Driven Scenario Repair for Self-Evolving Autonomous Driving |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2505.22067 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2505.22067 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2505.22067 |
| locations[1].id | doi:10.48550/arxiv.2505.22067 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2505.22067 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5067980386 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7177-5028 |
| authorships[0].author.display_name | Xin Xia |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xia, Xinyu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5078711649 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2099-4973 |
| authorships[1].author.display_name | Xingjun Ma |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ma, Xingjun |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5067926448 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6219-6251 |
| authorships[2].author.display_name | Dafang Zhuang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hu, Yunfeng |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5021504878 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1012-2856 |
| authorships[3].author.display_name | Ting Qu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Qu, Ting |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100785302 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7540-3021 |
| authorships[4].author.display_name | Chen Hong |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Chen, Hong |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5000673554 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7111-736X |
| authorships[5].author.display_name | Xun Gong |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Gong, Xun |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2505.22067 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | From Failures to Fixes: LLM-Driven Scenario Repair for Self-Evolving Autonomous Driving |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T11:00:00.990440 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2505.22067 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2505.22067 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2505.22067 |
| primary_location.id | pmh:oai:arXiv.org:2505.22067 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2505.22067 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2505.22067 |
| publication_date | 2025-05-28 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 85 |
| abstract_inverted_index.An | 88 |
| abstract_inverted_index.By | 70 |
| abstract_inverted_index.In | 46 |
| abstract_inverted_index.an | 52 |
| abstract_inverted_index.by | 62 |
| abstract_inverted_index.of | 16 |
| abstract_inverted_index.on | 43, 116 |
| abstract_inverted_index.to | 22, 60, 96 |
| abstract_inverted_index.we | 49 |
| abstract_inverted_index.The | 101 |
| abstract_inverted_index.and | 2, 24, 31, 37, 78, 99, 134 |
| abstract_inverted_index.are | 104 |
| abstract_inverted_index.but | 12 |
| abstract_inverted_index.for | 106 |
| abstract_inverted_index.its | 132 |
| abstract_inverted_index.key | 124 |
| abstract_inverted_index.not | 7 |
| abstract_inverted_index.the | 117 |
| abstract_inverted_index.SERA | 74, 121 |
| abstract_inverted_index.also | 13 |
| abstract_inverted_index.from | 84 |
| abstract_inverted_index.lack | 35 |
| abstract_inverted_index.only | 8 |
| abstract_inverted_index.show | 119 |
| abstract_inverted_index.that | 55, 120 |
| abstract_inverted_index.this | 47 |
| abstract_inverted_index.used | 105 |
| abstract_inverted_index.with | 112 |
| abstract_inverted_index.bank. | 87 |
| abstract_inverted_index.broad | 9 |
| abstract_inverted_index.cases | 65 |
| abstract_inverted_index.data. | 114 |
| abstract_inverted_index.logs, | 73 |
| abstract_inverted_index.often | 34 |
| abstract_inverted_index.their | 41 |
| abstract_inverted_index.these | 94 |
| abstract_inverted_index.those | 20 |
| abstract_inverted_index.under | 136 |
| abstract_inverted_index.across | 126 |
| abstract_inverted_index.cases, | 18 |
| abstract_inverted_index.impact | 42 |
| abstract_inverted_index.paper, | 48 |
| abstract_inverted_index.repair | 15 |
| abstract_inverted_index.robust | 1 |
| abstract_inverted_index.aligned | 82 |
| abstract_inverted_index.driving | 5, 58, 129 |
| abstract_inverted_index.enables | 56 |
| abstract_inverted_index.failure | 17, 64, 76 |
| abstract_inverted_index.further | 92 |
| abstract_inverted_index.methods | 33 |
| abstract_inverted_index.metrics | 125 |
| abstract_inverted_index.minimal | 113 |
| abstract_inverted_index.propose | 50 |
| abstract_inverted_index.refines | 93 |
| abstract_inverted_index.related | 21 |
| abstract_inverted_index.systems | 59 |
| abstract_inverted_index.through | 66 |
| abstract_inverted_index.Ensuring | 0 |
| abstract_inverted_index.However, | 27 |
| abstract_inverted_index.coverage | 11 |
| abstract_inverted_index.enabling | 109 |
| abstract_inverted_index.existing | 28 |
| abstract_inverted_index.few-shot | 107 |
| abstract_inverted_index.improves | 123 |
| abstract_inverted_index.limiting | 40 |
| abstract_inverted_index.maximize | 97 |
| abstract_inverted_index.multiple | 127 |
| abstract_inverted_index.patterns | 77 |
| abstract_inverted_index.requires | 6 |
| abstract_inverted_index.scenario | 10, 29, 68 |
| abstract_inverted_index.selected | 102 |
| abstract_inverted_index.semantic | 38 |
| abstract_inverted_index.targeted | 67, 110 |
| abstract_inverted_index.LLM-based | 89 |
| abstract_inverted_index.analyzing | 71 |
| abstract_inverted_index.benchmark | 118 |
| abstract_inverted_index.efficient | 14 |
| abstract_inverted_index.framework | 54 |
| abstract_inverted_index.mechanism | 91 |
| abstract_inverted_index.relevance | 98 |
| abstract_inverted_index.repairing | 63 |
| abstract_inverted_index.retrieves | 80 |
| abstract_inverted_index.scenarios | 83, 103 |
| abstract_inverted_index.selection | 32 |
| abstract_inverted_index.adaptation | 111 |
| abstract_inverted_index.adaptivity | 36 |
| abstract_inverted_index.autonomous | 4, 57, 128 |
| abstract_inverted_index.baselines, | 130 |
| abstract_inverted_index.diversity. | 100 |
| abstract_inverted_index.generation | 30 |
| abstract_inverted_index.identifies | 75 |
| abstract_inverted_index.reflection | 90 |
| abstract_inverted_index.relevance, | 39 |
| abstract_inverted_index.scenarios. | 26 |
| abstract_inverted_index.structured | 86 |
| abstract_inverted_index.Experiments | 115 |
| abstract_inverted_index.LLM-powered | 53 |
| abstract_inverted_index.challenging | 23 |
| abstract_inverted_index.conditions. | 138 |
| abstract_inverted_index.dynamically | 79 |
| abstract_inverted_index.performance | 44, 72 |
| abstract_inverted_index.self-evolve | 61 |
| abstract_inverted_index.consistently | 122 |
| abstract_inverted_index.fine-tuning, | 108 |
| abstract_inverted_index.improvement. | 45 |
| abstract_inverted_index.particularly | 19 |
| abstract_inverted_index.semantically | 81 |
| abstract_inverted_index.demonstrating | 131 |
| abstract_inverted_index.effectiveness | 133 |
| abstract_inverted_index.generalizable | 3 |
| abstract_inverted_index.\textbf{SERA}, | 51 |
| abstract_inverted_index.recommendation. | 69 |
| abstract_inverted_index.recommendations | 95 |
| abstract_inverted_index.safety-critical | 25, 137 |
| abstract_inverted_index.generalizability | 135 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |