From Histopathology Images to Cell Clouds: Learning Slide Representations with Hierarchical Cell Transformer Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2412.16715
It is clinically crucial and potentially very beneficial to be able to analyze and model directly the spatial distributions of cells in histopathology whole slide images (WSI). However, most existing WSI datasets lack cell-level annotations, owing to the extremely high cost over giga-pixel images. Thus, it remains an open question whether deep learning models can directly and effectively analyze WSIs from the semantic aspect of cell distributions. In this work, we construct a large-scale WSI dataset with more than 5 billion cell-level annotations, termed WSI-Cell5B, and a novel hierarchical Cell Cloud Transformer (CCFormer) to tackle these challenges. WSI-Cell5B is based on 6,998 WSIs of 11 cancers from The Cancer Genome Atlas Program, and all WSIs are annotated per cell by coordinates and types. To the best of our knowledge, WSI-Cell5B is the first WSI-level large-scale dataset integrating cell-level annotations. On the other hand, CCFormer formulates the collection of cells in each WSI as a cell cloud and models cell spatial distribution. Specifically, Neighboring Information Embedding (NIE) is proposed to characterize the distribution of cells within the neighborhood of each cell, and a novel Hierarchical Spatial Perception (HSP) module is proposed to learn the spatial relationship among cells in a bottom-up manner. The clinical analysis indicates that WSI-Cell5B can be used to design clinical evaluation metrics based on counting cells that effectively assess the survival risk of patients. Extensive experiments on survival prediction and cancer staging show that learning from cell spatial distribution alone can already achieve state-of-the-art (SOTA) performance, i.e., CCFormer strongly outperforms other competing methods.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2412.16715
- https://arxiv.org/pdf/2412.16715
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405766380
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405766380Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2412.16715Digital Object Identifier
- Title
-
From Histopathology Images to Cell Clouds: Learning Slide Representations with Hierarchical Cell TransformerWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-21Full publication date if available
- Authors
-
Zijiang Yang, Zhongwei Qiu, Tiancheng Lin, Hanqing Chao, Wanxing Chang, Yelin Yang, Yunshuo Zhang, Wenpei Jiao, Yixuan Shen, Wenbin Liu, Dongmei Fu, Dakai Jin, Ke Yan, Le Lü, Hui Jiang, Yun BianList of authors in order
- Landing page
-
https://arxiv.org/abs/2412.16715Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2412.16715Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2412.16715Direct OA link when available
- Concepts
-
Histopathology, Transformer, Computer science, Artificial intelligence, Engineering, Pathology, Medicine, Electrical engineering, VoltageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405766380 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2412.16715 |
| ids.doi | https://doi.org/10.48550/arxiv.2412.16715 |
| ids.openalex | https://openalex.org/W4405766380 |
| fwci | |
| type | preprint |
| title | From Histopathology Images to Cell Clouds: Learning Slide Representations with Hierarchical Cell Transformer |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12859 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9940999746322632 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1304 |
| topics[0].subfield.display_name | Biophysics |
| topics[0].display_name | Cell Image Analysis Techniques |
| topics[1].id | https://openalex.org/T10862 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9854000210762024 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | AI in cancer detection |
| topics[2].id | https://openalex.org/T12874 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9559999704360962 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Digital Imaging for Blood Diseases |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C544855455 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5507659316062927 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1070952 |
| concepts[0].display_name | Histopathology |
| concepts[1].id | https://openalex.org/C66322947 |
| concepts[1].level | 3 |
| concepts[1].score | 0.4666467010974884 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[1].display_name | Transformer |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.45299434661865234 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.41007229685783386 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C127413603 |
| concepts[4].level | 0 |
| concepts[4].score | 0.13160160183906555 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[4].display_name | Engineering |
| concepts[5].id | https://openalex.org/C142724271 |
| concepts[5].level | 1 |
| concepts[5].score | 0.12561959028244019 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[5].display_name | Pathology |
| concepts[6].id | https://openalex.org/C71924100 |
| concepts[6].level | 0 |
| concepts[6].score | 0.11016815900802612 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[6].display_name | Medicine |
| concepts[7].id | https://openalex.org/C119599485 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[7].display_name | Electrical engineering |
| concepts[8].id | https://openalex.org/C165801399 |
| concepts[8].level | 2 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[8].display_name | Voltage |
| keywords[0].id | https://openalex.org/keywords/histopathology |
| keywords[0].score | 0.5507659316062927 |
| keywords[0].display_name | Histopathology |
| keywords[1].id | https://openalex.org/keywords/transformer |
| keywords[1].score | 0.4666467010974884 |
| keywords[1].display_name | Transformer |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.45299434661865234 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.41007229685783386 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/engineering |
| keywords[4].score | 0.13160160183906555 |
| keywords[4].display_name | Engineering |
| keywords[5].id | https://openalex.org/keywords/pathology |
| keywords[5].score | 0.12561959028244019 |
| keywords[5].display_name | Pathology |
| keywords[6].id | https://openalex.org/keywords/medicine |
| keywords[6].score | 0.11016815900802612 |
| keywords[6].display_name | Medicine |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2412.16715 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2412.16715 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2412.16715 |
| locations[1].id | doi:10.48550/arxiv.2412.16715 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2412.16715 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5114804291 |
| authorships[0].author.orcid | https://orcid.org/0009-0003-1610-1869 |
| authorships[0].author.display_name | Zijiang Yang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yang, Zijiang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5086179961 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Zhongwei Qiu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Qiu, Zhongwei |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5025097974 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6761-5152 |
| authorships[2].author.display_name | Tiancheng Lin |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lin, Tiancheng |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5070759471 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5973-2343 |
| authorships[3].author.display_name | Hanqing Chao |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Chao, Hanqing |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5066605043 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Wanxing Chang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Chang, Wanxing |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5103985025 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Yelin Yang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yang, Yelin |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5041340452 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-1972-0553 |
| authorships[6].author.display_name | Yunshuo Zhang |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Zhang, Yunshuo |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5052798010 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-7546-6089 |
| authorships[7].author.display_name | Wenpei Jiao |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Jiao, Wenpei |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5083817198 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Yixuan Shen |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Shen, Yixuan |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5100373261 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-9469-7499 |
| authorships[9].author.display_name | Wenbin Liu |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Liu, Wenbin |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5101511618 |
| authorships[10].author.orcid | https://orcid.org/0000-0001-5404-1084 |
| authorships[10].author.display_name | Dongmei Fu |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Fu, Dongmei |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5027768127 |
| authorships[11].author.orcid | https://orcid.org/0000-0002-4806-2943 |
| authorships[11].author.display_name | Dakai Jin |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Jin, Dakai |
| authorships[11].is_corresponding | False |
| authorships[12].author.id | https://openalex.org/A5101967245 |
| authorships[12].author.orcid | https://orcid.org/0000-0002-0034-9013 |
| authorships[12].author.display_name | Ke Yan |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Yan, Ke |
| authorships[12].is_corresponding | False |
| authorships[13].author.id | https://openalex.org/A5045227579 |
| authorships[13].author.orcid | https://orcid.org/0000-0002-6799-9416 |
| authorships[13].author.display_name | Le Lü |
| authorships[13].author_position | middle |
| authorships[13].raw_author_name | Lu, Le |
| authorships[13].is_corresponding | False |
| authorships[14].author.id | https://openalex.org/A5080454453 |
| authorships[14].author.orcid | https://orcid.org/0000-0002-6256-2733 |
| authorships[14].author.display_name | Hui Jiang |
| authorships[14].author_position | middle |
| authorships[14].raw_author_name | Jiang, Hui |
| authorships[14].is_corresponding | False |
| authorships[15].author.id | https://openalex.org/A5031808825 |
| authorships[15].author.orcid | https://orcid.org/0000-0002-4863-4956 |
| authorships[15].author.display_name | Yun Bian |
| authorships[15].author_position | last |
| authorships[15].raw_author_name | Bian, Yun |
| authorships[15].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2412.16715 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-12-25T00:00:00 |
| display_name | From Histopathology Images to Cell Clouds: Learning Slide Representations with Hierarchical Cell Transformer |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12859 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9940999746322632 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1304 |
| primary_topic.subfield.display_name | Biophysics |
| primary_topic.display_name | Cell Image Analysis Techniques |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W3039419443, https://openalex.org/W4386772532, https://openalex.org/W4393212117, https://openalex.org/W2115661411, https://openalex.org/W2399391471, https://openalex.org/W2400254106, https://openalex.org/W2970729894 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2412.16715 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2412.16715 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2412.16715 |
| primary_location.id | pmh:oai:arXiv.org:2412.16715 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2412.16715 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2412.16715 |
| publication_date | 2024-12-21 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.5 | 79 |
| abstract_inverted_index.a | 72, 86, 153, 181, 198 |
| abstract_inverted_index.11 | 104 |
| abstract_inverted_index.In | 67 |
| abstract_inverted_index.It | 0 |
| abstract_inverted_index.On | 139 |
| abstract_inverted_index.To | 123 |
| abstract_inverted_index.an | 47 |
| abstract_inverted_index.as | 152 |
| abstract_inverted_index.be | 9, 208 |
| abstract_inverted_index.by | 119 |
| abstract_inverted_index.in | 21, 149, 197 |
| abstract_inverted_index.is | 1, 98, 130, 166, 188 |
| abstract_inverted_index.it | 45 |
| abstract_inverted_index.of | 19, 64, 103, 126, 147, 172, 177, 225 |
| abstract_inverted_index.on | 100, 216, 229 |
| abstract_inverted_index.to | 8, 11, 36, 93, 168, 190, 210 |
| abstract_inverted_index.we | 70 |
| abstract_inverted_index.The | 107, 201 |
| abstract_inverted_index.WSI | 30, 74, 151 |
| abstract_inverted_index.all | 113 |
| abstract_inverted_index.and | 4, 13, 56, 85, 112, 121, 156, 180, 232 |
| abstract_inverted_index.are | 115 |
| abstract_inverted_index.can | 54, 207, 243 |
| abstract_inverted_index.our | 127 |
| abstract_inverted_index.per | 117 |
| abstract_inverted_index.the | 16, 37, 61, 124, 131, 140, 145, 170, 175, 192, 222 |
| abstract_inverted_index.Cell | 89 |
| abstract_inverted_index.WSIs | 59, 102, 114 |
| abstract_inverted_index.able | 10 |
| abstract_inverted_index.best | 125 |
| abstract_inverted_index.cell | 65, 118, 154, 158, 239 |
| abstract_inverted_index.cost | 40 |
| abstract_inverted_index.deep | 51 |
| abstract_inverted_index.each | 150, 178 |
| abstract_inverted_index.from | 60, 106, 238 |
| abstract_inverted_index.high | 39 |
| abstract_inverted_index.lack | 32 |
| abstract_inverted_index.more | 77 |
| abstract_inverted_index.most | 28 |
| abstract_inverted_index.open | 48 |
| abstract_inverted_index.over | 41 |
| abstract_inverted_index.risk | 224 |
| abstract_inverted_index.show | 235 |
| abstract_inverted_index.than | 78 |
| abstract_inverted_index.that | 205, 219, 236 |
| abstract_inverted_index.this | 68 |
| abstract_inverted_index.used | 209 |
| abstract_inverted_index.very | 6 |
| abstract_inverted_index.with | 76 |
| abstract_inverted_index.(HSP) | 186 |
| abstract_inverted_index.(NIE) | 165 |
| abstract_inverted_index.6,998 | 101 |
| abstract_inverted_index.Atlas | 110 |
| abstract_inverted_index.Cloud | 90 |
| abstract_inverted_index.Thus, | 44 |
| abstract_inverted_index.alone | 242 |
| abstract_inverted_index.among | 195 |
| abstract_inverted_index.based | 99, 215 |
| abstract_inverted_index.cell, | 179 |
| abstract_inverted_index.cells | 20, 148, 173, 196, 218 |
| abstract_inverted_index.cloud | 155 |
| abstract_inverted_index.first | 132 |
| abstract_inverted_index.hand, | 142 |
| abstract_inverted_index.i.e., | 249 |
| abstract_inverted_index.learn | 191 |
| abstract_inverted_index.model | 14 |
| abstract_inverted_index.novel | 87, 182 |
| abstract_inverted_index.other | 141, 253 |
| abstract_inverted_index.owing | 35 |
| abstract_inverted_index.slide | 24 |
| abstract_inverted_index.these | 95 |
| abstract_inverted_index.whole | 23 |
| abstract_inverted_index.work, | 69 |
| abstract_inverted_index.(SOTA) | 247 |
| abstract_inverted_index.(WSI). | 26 |
| abstract_inverted_index.Cancer | 108 |
| abstract_inverted_index.Genome | 109 |
| abstract_inverted_index.aspect | 63 |
| abstract_inverted_index.assess | 221 |
| abstract_inverted_index.cancer | 233 |
| abstract_inverted_index.design | 211 |
| abstract_inverted_index.images | 25 |
| abstract_inverted_index.models | 53, 157 |
| abstract_inverted_index.module | 187 |
| abstract_inverted_index.tackle | 94 |
| abstract_inverted_index.termed | 83 |
| abstract_inverted_index.types. | 122 |
| abstract_inverted_index.within | 174 |
| abstract_inverted_index.Spatial | 184 |
| abstract_inverted_index.achieve | 245 |
| abstract_inverted_index.already | 244 |
| abstract_inverted_index.analyze | 12, 58 |
| abstract_inverted_index.billion | 80 |
| abstract_inverted_index.cancers | 105 |
| abstract_inverted_index.crucial | 3 |
| abstract_inverted_index.dataset | 75, 135 |
| abstract_inverted_index.images. | 43 |
| abstract_inverted_index.manner. | 200 |
| abstract_inverted_index.metrics | 214 |
| abstract_inverted_index.remains | 46 |
| abstract_inverted_index.spatial | 17, 159, 193, 240 |
| abstract_inverted_index.staging | 234 |
| abstract_inverted_index.whether | 50 |
| abstract_inverted_index.CCFormer | 143, 250 |
| abstract_inverted_index.However, | 27 |
| abstract_inverted_index.Program, | 111 |
| abstract_inverted_index.analysis | 203 |
| abstract_inverted_index.clinical | 202, 212 |
| abstract_inverted_index.counting | 217 |
| abstract_inverted_index.datasets | 31 |
| abstract_inverted_index.directly | 15, 55 |
| abstract_inverted_index.existing | 29 |
| abstract_inverted_index.learning | 52, 237 |
| abstract_inverted_index.methods. | 255 |
| abstract_inverted_index.proposed | 167, 189 |
| abstract_inverted_index.question | 49 |
| abstract_inverted_index.semantic | 62 |
| abstract_inverted_index.strongly | 251 |
| abstract_inverted_index.survival | 223, 230 |
| abstract_inverted_index.Embedding | 164 |
| abstract_inverted_index.Extensive | 227 |
| abstract_inverted_index.WSI-level | 133 |
| abstract_inverted_index.annotated | 116 |
| abstract_inverted_index.bottom-up | 199 |
| abstract_inverted_index.competing | 254 |
| abstract_inverted_index.construct | 71 |
| abstract_inverted_index.extremely | 38 |
| abstract_inverted_index.indicates | 204 |
| abstract_inverted_index.patients. | 226 |
| abstract_inverted_index.(CCFormer) | 92 |
| abstract_inverted_index.Perception | 185 |
| abstract_inverted_index.WSI-Cell5B | 97, 129, 206 |
| abstract_inverted_index.beneficial | 7 |
| abstract_inverted_index.cell-level | 33, 81, 137 |
| abstract_inverted_index.clinically | 2 |
| abstract_inverted_index.collection | 146 |
| abstract_inverted_index.evaluation | 213 |
| abstract_inverted_index.formulates | 144 |
| abstract_inverted_index.giga-pixel | 42 |
| abstract_inverted_index.knowledge, | 128 |
| abstract_inverted_index.prediction | 231 |
| abstract_inverted_index.Information | 163 |
| abstract_inverted_index.Neighboring | 162 |
| abstract_inverted_index.Transformer | 91 |
| abstract_inverted_index.WSI-Cell5B, | 84 |
| abstract_inverted_index.challenges. | 96 |
| abstract_inverted_index.coordinates | 120 |
| abstract_inverted_index.effectively | 57, 220 |
| abstract_inverted_index.experiments | 228 |
| abstract_inverted_index.integrating | 136 |
| abstract_inverted_index.large-scale | 73, 134 |
| abstract_inverted_index.outperforms | 252 |
| abstract_inverted_index.potentially | 5 |
| abstract_inverted_index.Hierarchical | 183 |
| abstract_inverted_index.annotations, | 34, 82 |
| abstract_inverted_index.annotations. | 138 |
| abstract_inverted_index.characterize | 169 |
| abstract_inverted_index.distribution | 171, 241 |
| abstract_inverted_index.hierarchical | 88 |
| abstract_inverted_index.neighborhood | 176 |
| abstract_inverted_index.performance, | 248 |
| abstract_inverted_index.relationship | 194 |
| abstract_inverted_index.Specifically, | 161 |
| abstract_inverted_index.distribution. | 160 |
| abstract_inverted_index.distributions | 18 |
| abstract_inverted_index.distributions. | 66 |
| abstract_inverted_index.histopathology | 22 |
| abstract_inverted_index.state-of-the-art | 246 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 16 |
| citation_normalized_percentile |