From Meaningful Data Science to Impactful Decisions: The Importance of Being Causally Prescriptive Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.5334/dsj-2023-008
This article proposes a framework for transition from traditional data science where the focus is on extracting value from available data to goal-driven analytical decision making where the business objective is defined first. We discuss the link between predictive analytics and prescriptive analytics in the context of formulating the problem, and assert that all prescriptive analytics problem formulations assume a causal link between decisions and outcomes. We emphasize the role of predictive analytics and causal inference in specifying the causal link between decisions and outcomes accurately, and ultimately in aligning the analysis with the business objectives. We offer practical examples that integrate various required analytics tasks and describe scenarios where causal inference is required versus not required.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5334/dsj-2023-008
- https://storage.googleapis.com/jnl-up-j-dsj-files/journals/1/articles/1435/6447b1212791c.pdf
- OA Status
- gold
- Cited By
- 3
- References
- 23
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4367021207
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4367021207Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5334/dsj-2023-008Digital Object Identifier
- Title
-
From Meaningful Data Science to Impactful Decisions: The Importance of Being Causally PrescriptiveWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-01Full publication date if available
- Authors
-
Victor S. Y. Lo, Dessislava A. PachamanovaList of authors in order
- Landing page
-
https://doi.org/10.5334/dsj-2023-008Publisher landing page
- PDF URL
-
https://storage.googleapis.com/jnl-up-j-dsj-files/journals/1/articles/1435/6447b1212791c.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://storage.googleapis.com/jnl-up-j-dsj-files/journals/1/articles/1435/6447b1212791c.pdfDirect OA link when available
- Concepts
-
Causal inference, Computer science, Data science, Analytics, Business analytics, Inference, Predictive analytics, Context (archaeology), Business intelligence, Data analysis, Management science, Knowledge management, Data mining, Artificial intelligence, Business model, Business analysis, Econometrics, Paleontology, Marketing, Economics, Biology, BusinessTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
23Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4367021207 |
|---|---|
| doi | https://doi.org/10.5334/dsj-2023-008 |
| ids.doi | https://doi.org/10.5334/dsj-2023-008 |
| ids.openalex | https://openalex.org/W4367021207 |
| fwci | 1.32129421 |
| type | article |
| title | From Meaningful Data Science to Impactful Decisions: The Importance of Being Causally Prescriptive |
| biblio.issue | |
| biblio.volume | 22 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11891 |
| topics[0].field.id | https://openalex.org/fields/14 |
| topics[0].field.display_name | Business, Management and Accounting |
| topics[0].score | 0.9955999851226807 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1404 |
| topics[0].subfield.display_name | Management Information Systems |
| topics[0].display_name | Big Data and Business Intelligence |
| topics[1].id | https://openalex.org/T11918 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.983299970626831 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1803 |
| topics[1].subfield.display_name | Management Science and Operations Research |
| topics[1].display_name | Forecasting Techniques and Applications |
| topics[2].id | https://openalex.org/T11303 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.983299970626831 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Bayesian Modeling and Causal Inference |
| is_xpac | False |
| apc_list.value | 350 |
| apc_list.currency | GBP |
| apc_list.value_usd | 429 |
| apc_paid.value | 350 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 429 |
| concepts[0].id | https://openalex.org/C158600405 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7615902423858643 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5054566 |
| concepts[0].display_name | Causal inference |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7325731515884399 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2522767166 |
| concepts[2].level | 1 |
| concepts[2].score | 0.7107110023498535 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[2].display_name | Data science |
| concepts[3].id | https://openalex.org/C79158427 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6767838597297668 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q485396 |
| concepts[3].display_name | Analytics |
| concepts[4].id | https://openalex.org/C37952496 |
| concepts[4].level | 4 |
| concepts[4].score | 0.6243469715118408 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5001829 |
| concepts[4].display_name | Business analytics |
| concepts[5].id | https://openalex.org/C2776214188 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5826753973960876 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[5].display_name | Inference |
| concepts[6].id | https://openalex.org/C83209312 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5572535991668701 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1053367 |
| concepts[6].display_name | Predictive analytics |
| concepts[7].id | https://openalex.org/C2779343474 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5439394116401672 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[7].display_name | Context (archaeology) |
| concepts[8].id | https://openalex.org/C2767350 |
| concepts[8].level | 2 |
| concepts[8].score | 0.44473975896835327 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q6662173 |
| concepts[8].display_name | Business intelligence |
| concepts[9].id | https://openalex.org/C175801342 |
| concepts[9].level | 2 |
| concepts[9].score | 0.42580926418304443 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1988917 |
| concepts[9].display_name | Data analysis |
| concepts[10].id | https://openalex.org/C539667460 |
| concepts[10].level | 1 |
| concepts[10].score | 0.37210360169410706 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2414942 |
| concepts[10].display_name | Management science |
| concepts[11].id | https://openalex.org/C56739046 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3141990900039673 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q192060 |
| concepts[11].display_name | Knowledge management |
| concepts[12].id | https://openalex.org/C124101348 |
| concepts[12].level | 1 |
| concepts[12].score | 0.18753266334533691 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[12].display_name | Data mining |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.1798461377620697 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C4216890 |
| concepts[14].level | 2 |
| concepts[14].score | 0.15712687373161316 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q815823 |
| concepts[14].display_name | Business model |
| concepts[15].id | https://openalex.org/C189076506 |
| concepts[15].level | 3 |
| concepts[15].score | 0.11211243271827698 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1518232 |
| concepts[15].display_name | Business analysis |
| concepts[16].id | https://openalex.org/C149782125 |
| concepts[16].level | 1 |
| concepts[16].score | 0.08137074112892151 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[16].display_name | Econometrics |
| concepts[17].id | https://openalex.org/C151730666 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[17].display_name | Paleontology |
| concepts[18].id | https://openalex.org/C162853370 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q39809 |
| concepts[18].display_name | Marketing |
| concepts[19].id | https://openalex.org/C162324750 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[19].display_name | Economics |
| concepts[20].id | https://openalex.org/C86803240 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[20].display_name | Biology |
| concepts[21].id | https://openalex.org/C144133560 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[21].display_name | Business |
| keywords[0].id | https://openalex.org/keywords/causal-inference |
| keywords[0].score | 0.7615902423858643 |
| keywords[0].display_name | Causal inference |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7325731515884399 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/data-science |
| keywords[2].score | 0.7107110023498535 |
| keywords[2].display_name | Data science |
| keywords[3].id | https://openalex.org/keywords/analytics |
| keywords[3].score | 0.6767838597297668 |
| keywords[3].display_name | Analytics |
| keywords[4].id | https://openalex.org/keywords/business-analytics |
| keywords[4].score | 0.6243469715118408 |
| keywords[4].display_name | Business analytics |
| keywords[5].id | https://openalex.org/keywords/inference |
| keywords[5].score | 0.5826753973960876 |
| keywords[5].display_name | Inference |
| keywords[6].id | https://openalex.org/keywords/predictive-analytics |
| keywords[6].score | 0.5572535991668701 |
| keywords[6].display_name | Predictive analytics |
| keywords[7].id | https://openalex.org/keywords/context |
| keywords[7].score | 0.5439394116401672 |
| keywords[7].display_name | Context (archaeology) |
| keywords[8].id | https://openalex.org/keywords/business-intelligence |
| keywords[8].score | 0.44473975896835327 |
| keywords[8].display_name | Business intelligence |
| keywords[9].id | https://openalex.org/keywords/data-analysis |
| keywords[9].score | 0.42580926418304443 |
| keywords[9].display_name | Data analysis |
| keywords[10].id | https://openalex.org/keywords/management-science |
| keywords[10].score | 0.37210360169410706 |
| keywords[10].display_name | Management science |
| keywords[11].id | https://openalex.org/keywords/knowledge-management |
| keywords[11].score | 0.3141990900039673 |
| keywords[11].display_name | Knowledge management |
| keywords[12].id | https://openalex.org/keywords/data-mining |
| keywords[12].score | 0.18753266334533691 |
| keywords[12].display_name | Data mining |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.1798461377620697 |
| keywords[13].display_name | Artificial intelligence |
| keywords[14].id | https://openalex.org/keywords/business-model |
| keywords[14].score | 0.15712687373161316 |
| keywords[14].display_name | Business model |
| keywords[15].id | https://openalex.org/keywords/business-analysis |
| keywords[15].score | 0.11211243271827698 |
| keywords[15].display_name | Business analysis |
| keywords[16].id | https://openalex.org/keywords/econometrics |
| keywords[16].score | 0.08137074112892151 |
| keywords[16].display_name | Econometrics |
| language | en |
| locations[0].id | doi:10.5334/dsj-2023-008 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S62969111 |
| locations[0].source.issn | 1683-1470 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1683-1470 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Data Science Journal |
| locations[0].source.host_organization | https://openalex.org/P4310320511 |
| locations[0].source.host_organization_name | Ubiquity Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320511 |
| locations[0].source.host_organization_lineage_names | Ubiquity Press |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://storage.googleapis.com/jnl-up-j-dsj-files/journals/1/articles/1435/6447b1212791c.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Data Science Journal |
| locations[0].landing_page_url | https://doi.org/10.5334/dsj-2023-008 |
| locations[1].id | pmh:oai:doaj.org/article:a333ae1a6c05461c983cf2b9d8c6aee0 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Data Science Journal, Vol 22, Pp 8-8 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/a333ae1a6c05461c983cf2b9d8c6aee0 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5016796485 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3715-6722 |
| authorships[0].author.display_name | Victor S. Y. Lo |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1318611468 |
| authorships[0].affiliations[0].raw_affiliation_string | Senior Vice President of Data Science and Artificial Intelligence, Workplace Investing, Fidelity Investments, Boston, MA 02210 |
| authorships[0].institutions[0].id | https://openalex.org/I1318611468 |
| authorships[0].institutions[0].ror | https://ror.org/04v8c9r98 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I1318611468 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Fidelity Investments (United States) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Victor S. Y. Lo |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Senior Vice President of Data Science and Artificial Intelligence, Workplace Investing, Fidelity Investments, Boston, MA 02210 |
| authorships[1].author.id | https://openalex.org/A5002632112 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1373-1553 |
| authorships[1].author.display_name | Dessislava A. Pachamanova |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I96062909 |
| authorships[1].affiliations[0].raw_affiliation_string | Professor and Zwerling Family Endowed Term Chair, Babson College, Wellesley, MA 02457 |
| authorships[1].institutions[0].id | https://openalex.org/I96062909 |
| authorships[1].institutions[0].ror | https://ror.org/01f0syq13 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I96062909 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Babson College |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Dessislava A. Pachamanova |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Professor and Zwerling Family Endowed Term Chair, Babson College, Wellesley, MA 02457 |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://storage.googleapis.com/jnl-up-j-dsj-files/journals/1/articles/1435/6447b1212791c.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | From Meaningful Data Science to Impactful Decisions: The Importance of Being Causally Prescriptive |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11891 |
| primary_topic.field.id | https://openalex.org/fields/14 |
| primary_topic.field.display_name | Business, Management and Accounting |
| primary_topic.score | 0.9955999851226807 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1404 |
| primary_topic.subfield.display_name | Management Information Systems |
| primary_topic.display_name | Big Data and Business Intelligence |
| related_works | https://openalex.org/W4388808755, https://openalex.org/W2884086002, https://openalex.org/W2410070362, https://openalex.org/W1490270786, https://openalex.org/W2782627424, https://openalex.org/W2946587456, https://openalex.org/W2563093951, https://openalex.org/W4319793814, https://openalex.org/W4248530909, https://openalex.org/W2496041693 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.5334/dsj-2023-008 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S62969111 |
| best_oa_location.source.issn | 1683-1470 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1683-1470 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Data Science Journal |
| best_oa_location.source.host_organization | https://openalex.org/P4310320511 |
| best_oa_location.source.host_organization_name | Ubiquity Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320511 |
| best_oa_location.source.host_organization_lineage_names | Ubiquity Press |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://storage.googleapis.com/jnl-up-j-dsj-files/journals/1/articles/1435/6447b1212791c.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Data Science Journal |
| best_oa_location.landing_page_url | https://doi.org/10.5334/dsj-2023-008 |
| primary_location.id | doi:10.5334/dsj-2023-008 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S62969111 |
| primary_location.source.issn | 1683-1470 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1683-1470 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Data Science Journal |
| primary_location.source.host_organization | https://openalex.org/P4310320511 |
| primary_location.source.host_organization_name | Ubiquity Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320511 |
| primary_location.source.host_organization_lineage_names | Ubiquity Press |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://storage.googleapis.com/jnl-up-j-dsj-files/journals/1/articles/1435/6447b1212791c.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Data Science Journal |
| primary_location.landing_page_url | https://doi.org/10.5334/dsj-2023-008 |
| publication_date | 2023-01-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2526432835, https://openalex.org/W3121960896, https://openalex.org/W3002582836, https://openalex.org/W2969714402, https://openalex.org/W3046323612, https://openalex.org/W3037447579, https://openalex.org/W2535299307, https://openalex.org/W3112780530, https://openalex.org/W2036969993, https://openalex.org/W2945215795, https://openalex.org/W2988346013, https://openalex.org/W142502493, https://openalex.org/W2093065590, https://openalex.org/W2068061662, https://openalex.org/W1981886486, https://openalex.org/W3089436498, https://openalex.org/W1650532115, https://openalex.org/W6637220762, https://openalex.org/W3014109009, https://openalex.org/W3082736682, https://openalex.org/W4250104267, https://openalex.org/W2041186114, https://openalex.org/W4313656996 |
| referenced_works_count | 23 |
| abstract_inverted_index.a | 3, 59 |
| abstract_inverted_index.We | 33, 66, 96 |
| abstract_inverted_index.in | 43, 76, 88 |
| abstract_inverted_index.is | 14, 30, 112 |
| abstract_inverted_index.of | 46, 70 |
| abstract_inverted_index.on | 15 |
| abstract_inverted_index.to | 21 |
| abstract_inverted_index.all | 53 |
| abstract_inverted_index.and | 40, 50, 64, 73, 83, 86, 106 |
| abstract_inverted_index.for | 5 |
| abstract_inverted_index.not | 115 |
| abstract_inverted_index.the | 12, 27, 35, 44, 48, 68, 78, 90, 93 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.data | 9, 20 |
| abstract_inverted_index.from | 7, 18 |
| abstract_inverted_index.link | 36, 61, 80 |
| abstract_inverted_index.role | 69 |
| abstract_inverted_index.that | 52, 100 |
| abstract_inverted_index.with | 92 |
| abstract_inverted_index.focus | 13 |
| abstract_inverted_index.offer | 97 |
| abstract_inverted_index.tasks | 105 |
| abstract_inverted_index.value | 17 |
| abstract_inverted_index.where | 11, 26, 109 |
| abstract_inverted_index.assert | 51 |
| abstract_inverted_index.assume | 58 |
| abstract_inverted_index.causal | 60, 74, 79, 110 |
| abstract_inverted_index.first. | 32 |
| abstract_inverted_index.making | 25 |
| abstract_inverted_index.versus | 114 |
| abstract_inverted_index.article | 1 |
| abstract_inverted_index.between | 37, 62, 81 |
| abstract_inverted_index.context | 45 |
| abstract_inverted_index.defined | 31 |
| abstract_inverted_index.discuss | 34 |
| abstract_inverted_index.problem | 56 |
| abstract_inverted_index.science | 10 |
| abstract_inverted_index.various | 102 |
| abstract_inverted_index.aligning | 89 |
| abstract_inverted_index.analysis | 91 |
| abstract_inverted_index.business | 28, 94 |
| abstract_inverted_index.decision | 24 |
| abstract_inverted_index.describe | 107 |
| abstract_inverted_index.examples | 99 |
| abstract_inverted_index.outcomes | 84 |
| abstract_inverted_index.problem, | 49 |
| abstract_inverted_index.proposes | 2 |
| abstract_inverted_index.required | 103, 113 |
| abstract_inverted_index.analytics | 39, 42, 55, 72, 104 |
| abstract_inverted_index.available | 19 |
| abstract_inverted_index.decisions | 63, 82 |
| abstract_inverted_index.emphasize | 67 |
| abstract_inverted_index.framework | 4 |
| abstract_inverted_index.inference | 75, 111 |
| abstract_inverted_index.integrate | 101 |
| abstract_inverted_index.objective | 29 |
| abstract_inverted_index.outcomes. | 65 |
| abstract_inverted_index.practical | 98 |
| abstract_inverted_index.required. | 116 |
| abstract_inverted_index.scenarios | 108 |
| abstract_inverted_index.analytical | 23 |
| abstract_inverted_index.extracting | 16 |
| abstract_inverted_index.predictive | 38, 71 |
| abstract_inverted_index.specifying | 77 |
| abstract_inverted_index.transition | 6 |
| abstract_inverted_index.ultimately | 87 |
| abstract_inverted_index.accurately, | 85 |
| abstract_inverted_index.formulating | 47 |
| abstract_inverted_index.goal-driven | 22 |
| abstract_inverted_index.objectives. | 95 |
| abstract_inverted_index.traditional | 8 |
| abstract_inverted_index.formulations | 57 |
| abstract_inverted_index.prescriptive | 41, 54 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5016796485, https://openalex.org/A5002632112 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I1318611468, https://openalex.org/I96062909 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.7799999713897705 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.7985907 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |