From Pascal's Theorem to the geometry of Ziegler's line arrangements Article Swipe
Alexandru Dimca
,
Gabriel Sticlaru
·
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2312.11928
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2312.11928
Günter Ziegler has shown in 1989 that some homological invariants associated with the free resolutions of Jacobian ideals of line arrangements are not determined by combinatorics. His classical example involves hexagons inscribed in conics. Independently, Sergey Yuzvinsky has arrived in 1993 at the same type of line arrangements in order to show that formality is not determined by the combinatorics. In this note we look into the geometry of such line arrangements, and find out an unexpected relation to the classical Pascal's Theorem. Our results give information on the minimal degree of a Jacobian syzygy and on the formality of such hexagonal line arrangements in general, without an explicit choice for the six vertices of the hexagon.
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2312.11928
- https://arxiv.org/pdf/2312.11928
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390042238
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390042238Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2312.11928Digital Object Identifier
- Title
-
From Pascal's Theorem to the geometry of Ziegler's line arrangementsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-19Full publication date if available
- Authors
-
Alexandru Dimca, Gabriel SticlaruList of authors in order
- Landing page
-
https://arxiv.org/abs/2312.11928Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2312.11928Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2312.11928Direct OA link when available
- Concepts
-
Mathematics, Formality, Conic section, Hilbert's syzygy theorem, Combinatorics, Pascal (unit), Algebraic geometry, Line (geometry), Geometry, Pure mathematics, Computer science, Programming language, Philosophy, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390042238 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2312.11928 |
| ids.doi | https://doi.org/10.48550/arxiv.2312.11928 |
| ids.openalex | https://openalex.org/W4390042238 |
| fwci | |
| type | preprint |
| title | From Pascal's Theorem to the geometry of Ziegler's line arrangements |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10948 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9789999723434448 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2607 |
| topics[0].subfield.display_name | Discrete Mathematics and Combinatorics |
| topics[0].display_name | Advanced Combinatorial Mathematics |
| topics[1].id | https://openalex.org/T12649 |
| topics[1].field.id | https://openalex.org/fields/30 |
| topics[1].field.display_name | Pharmacology, Toxicology and Pharmaceutics |
| topics[1].score | 0.9783999919891357 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3004 |
| topics[1].subfield.display_name | Pharmacology |
| topics[1].display_name | Alkaloids: synthesis and pharmacology |
| topics[2].id | https://openalex.org/T12756 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9706000089645386 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Plant Toxicity and Pharmacological Properties |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C33923547 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7360798120498657 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[0].display_name | Mathematics |
| concepts[1].id | https://openalex.org/C2777159308 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6849081516265869 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1757948 |
| concepts[1].display_name | Formality |
| concepts[2].id | https://openalex.org/C108598597 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6710183024406433 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q124255 |
| concepts[2].display_name | Conic section |
| concepts[3].id | https://openalex.org/C55101346 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6625095009803772 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q85776755 |
| concepts[3].display_name | Hilbert's syzygy theorem |
| concepts[4].id | https://openalex.org/C114614502 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5044115781784058 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[4].display_name | Combinatorics |
| concepts[5].id | https://openalex.org/C75608658 |
| concepts[5].level | 2 |
| concepts[5].score | 0.49427294731140137 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q44395 |
| concepts[5].display_name | Pascal (unit) |
| concepts[6].id | https://openalex.org/C68363185 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4596017003059387 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q180969 |
| concepts[6].display_name | Algebraic geometry |
| concepts[7].id | https://openalex.org/C198352243 |
| concepts[7].level | 2 |
| concepts[7].score | 0.42561548948287964 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q37105 |
| concepts[7].display_name | Line (geometry) |
| concepts[8].id | https://openalex.org/C2524010 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4167087972164154 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[8].display_name | Geometry |
| concepts[9].id | https://openalex.org/C202444582 |
| concepts[9].level | 1 |
| concepts[9].score | 0.36331266164779663 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[9].display_name | Pure mathematics |
| concepts[10].id | https://openalex.org/C41008148 |
| concepts[10].level | 0 |
| concepts[10].score | 0.08537837862968445 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[10].display_name | Computer science |
| concepts[11].id | https://openalex.org/C199360897 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[11].display_name | Programming language |
| concepts[12].id | https://openalex.org/C138885662 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[12].display_name | Philosophy |
| concepts[13].id | https://openalex.org/C41895202 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[13].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/mathematics |
| keywords[0].score | 0.7360798120498657 |
| keywords[0].display_name | Mathematics |
| keywords[1].id | https://openalex.org/keywords/formality |
| keywords[1].score | 0.6849081516265869 |
| keywords[1].display_name | Formality |
| keywords[2].id | https://openalex.org/keywords/conic-section |
| keywords[2].score | 0.6710183024406433 |
| keywords[2].display_name | Conic section |
| keywords[3].id | https://openalex.org/keywords/hilberts-syzygy-theorem |
| keywords[3].score | 0.6625095009803772 |
| keywords[3].display_name | Hilbert's syzygy theorem |
| keywords[4].id | https://openalex.org/keywords/combinatorics |
| keywords[4].score | 0.5044115781784058 |
| keywords[4].display_name | Combinatorics |
| keywords[5].id | https://openalex.org/keywords/pascal |
| keywords[5].score | 0.49427294731140137 |
| keywords[5].display_name | Pascal (unit) |
| keywords[6].id | https://openalex.org/keywords/algebraic-geometry |
| keywords[6].score | 0.4596017003059387 |
| keywords[6].display_name | Algebraic geometry |
| keywords[7].id | https://openalex.org/keywords/line |
| keywords[7].score | 0.42561548948287964 |
| keywords[7].display_name | Line (geometry) |
| keywords[8].id | https://openalex.org/keywords/geometry |
| keywords[8].score | 0.4167087972164154 |
| keywords[8].display_name | Geometry |
| keywords[9].id | https://openalex.org/keywords/pure-mathematics |
| keywords[9].score | 0.36331266164779663 |
| keywords[9].display_name | Pure mathematics |
| keywords[10].id | https://openalex.org/keywords/computer-science |
| keywords[10].score | 0.08537837862968445 |
| keywords[10].display_name | Computer science |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2312.11928 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2312.11928 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2312.11928 |
| locations[1].id | doi:10.48550/arxiv.2312.11928 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2312.11928 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5032437224 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9679-9870 |
| authorships[0].author.display_name | Alexandru Dimca |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dimca, Alexandru |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5012384539 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6607-6313 |
| authorships[1].author.display_name | Gabriel Sticlaru |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Sticlaru, Gabriel |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2312.11928 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-12-22T00:00:00 |
| display_name | From Pascal's Theorem to the geometry of Ziegler's line arrangements |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10948 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9789999723434448 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2607 |
| primary_topic.subfield.display_name | Discrete Mathematics and Combinatorics |
| primary_topic.display_name | Advanced Combinatorial Mathematics |
| related_works | https://openalex.org/W25517187, https://openalex.org/W2480381080, https://openalex.org/W2193232575, https://openalex.org/W2329847998, https://openalex.org/W2500726251, https://openalex.org/W4250466770, https://openalex.org/W138719379, https://openalex.org/W2613200459, https://openalex.org/W1838148781, https://openalex.org/W1984083606 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2312.11928 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2312.11928 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2312.11928 |
| primary_location.id | pmh:oai:arXiv.org:2312.11928 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2312.11928 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2312.11928 |
| publication_date | 2023-12-19 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 92 |
| abstract_inverted_index.In | 60 |
| abstract_inverted_index.an | 75, 107 |
| abstract_inverted_index.at | 41 |
| abstract_inverted_index.by | 24, 57 |
| abstract_inverted_index.in | 4, 32, 39, 48, 104 |
| abstract_inverted_index.is | 54 |
| abstract_inverted_index.of | 15, 18, 45, 68, 91, 99, 114 |
| abstract_inverted_index.on | 87, 96 |
| abstract_inverted_index.to | 50, 78 |
| abstract_inverted_index.we | 63 |
| abstract_inverted_index.His | 26 |
| abstract_inverted_index.Our | 83 |
| abstract_inverted_index.and | 72, 95 |
| abstract_inverted_index.are | 21 |
| abstract_inverted_index.for | 110 |
| abstract_inverted_index.has | 2, 37 |
| abstract_inverted_index.not | 22, 55 |
| abstract_inverted_index.out | 74 |
| abstract_inverted_index.six | 112 |
| abstract_inverted_index.the | 12, 42, 58, 66, 79, 88, 97, 111, 115 |
| abstract_inverted_index.1989 | 5 |
| abstract_inverted_index.1993 | 40 |
| abstract_inverted_index.find | 73 |
| abstract_inverted_index.free | 13 |
| abstract_inverted_index.give | 85 |
| abstract_inverted_index.into | 65 |
| abstract_inverted_index.line | 19, 46, 70, 102 |
| abstract_inverted_index.look | 64 |
| abstract_inverted_index.note | 62 |
| abstract_inverted_index.same | 43 |
| abstract_inverted_index.show | 51 |
| abstract_inverted_index.some | 7 |
| abstract_inverted_index.such | 69, 100 |
| abstract_inverted_index.that | 6, 52 |
| abstract_inverted_index.this | 61 |
| abstract_inverted_index.type | 44 |
| abstract_inverted_index.with | 11 |
| abstract_inverted_index.order | 49 |
| abstract_inverted_index.shown | 3 |
| abstract_inverted_index.Sergey | 35 |
| abstract_inverted_index.choice | 109 |
| abstract_inverted_index.degree | 90 |
| abstract_inverted_index.ideals | 17 |
| abstract_inverted_index.syzygy | 94 |
| abstract_inverted_index.Günter | 0 |
| abstract_inverted_index.Ziegler | 1 |
| abstract_inverted_index.arrived | 38 |
| abstract_inverted_index.conics. | 33 |
| abstract_inverted_index.example | 28 |
| abstract_inverted_index.minimal | 89 |
| abstract_inverted_index.results | 84 |
| abstract_inverted_index.without | 106 |
| abstract_inverted_index.Jacobian | 16, 93 |
| abstract_inverted_index.Pascal's | 81 |
| abstract_inverted_index.Theorem. | 82 |
| abstract_inverted_index.explicit | 108 |
| abstract_inverted_index.general, | 105 |
| abstract_inverted_index.geometry | 67 |
| abstract_inverted_index.hexagon. | 116 |
| abstract_inverted_index.hexagons | 30 |
| abstract_inverted_index.involves | 29 |
| abstract_inverted_index.relation | 77 |
| abstract_inverted_index.vertices | 113 |
| abstract_inverted_index.Yuzvinsky | 36 |
| abstract_inverted_index.classical | 27, 80 |
| abstract_inverted_index.formality | 53, 98 |
| abstract_inverted_index.hexagonal | 101 |
| abstract_inverted_index.inscribed | 31 |
| abstract_inverted_index.associated | 10 |
| abstract_inverted_index.determined | 23, 56 |
| abstract_inverted_index.invariants | 9 |
| abstract_inverted_index.unexpected | 76 |
| abstract_inverted_index.homological | 8 |
| abstract_inverted_index.information | 86 |
| abstract_inverted_index.resolutions | 14 |
| abstract_inverted_index.arrangements | 20, 47, 103 |
| abstract_inverted_index.arrangements, | 71 |
| abstract_inverted_index.Independently, | 34 |
| abstract_inverted_index.combinatorics. | 25, 59 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.4000000059604645 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile |