From Semantic Retrieval to Pairwise Ranking Article Swipe
Rui Li
,
Yunjiang Jiang
,
Wen-Yun Yang
,
Guoyu Tang
,
Songlin Wang
,
Chaoyi Ma
,
Wei He
,
Xi Xiong
,
Yun Xiao
,
Eric Zhao
·
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1145/3331184.3331434
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1145/3331184.3331434
We introduce deep learning models to the two most important stages in product search at JD.com, one of the largest e-commerce platforms in the world. Specifically, we outline the design of a deep learning system that retrieves semantically relevant items to a query within milliseconds, and a pairwise deep re-ranking system, which learns subtle user preferences. Compared to traditional search systems, the proposed approaches are better at semantic retrieval and personalized ranking, achieving significant improvements.
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1145/3331184.3331434
- https://dl.acm.org/doi/pdf/10.1145/3331184.3331434
- OA Status
- gold
- Cited By
- 4
- References
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2964316982
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2964316982Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3331184.3331434Digital Object Identifier
- Title
-
From Semantic Retrieval to Pairwise RankingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-07-18Full publication date if available
- Authors
-
Rui Li, Yunjiang Jiang, Wen-Yun Yang, Guoyu Tang, Songlin Wang, Chaoyi Ma, Wei He, Xi Xiong, Yun Xiao, Eric ZhaoList of authors in order
- Landing page
-
https://doi.org/10.1145/3331184.3331434Publisher landing page
- PDF URL
-
https://dl.acm.org/doi/pdf/10.1145/3331184.3331434Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://dl.acm.org/doi/pdf/10.1145/3331184.3331434Direct OA link when available
- Concepts
-
Computer science, Pairwise comparison, Ranking (information retrieval), Information retrieval, Learning to rank, Deep learning, Artificial intelligence, Product (mathematics), Geometry, MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1, 2022: 1, 2021: 2Per-year citation counts (last 5 years)
- References (count)
-
3Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2964316982 |
|---|---|
| doi | https://doi.org/10.1145/3331184.3331434 |
| ids.doi | https://doi.org/10.1145/3331184.3331434 |
| ids.mag | 2964316982 |
| ids.openalex | https://openalex.org/W2964316982 |
| fwci | 1.09203011 |
| type | article |
| title | From Semantic Retrieval to Pairwise Ranking |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 1384 |
| biblio.first_page | 1383 |
| topics[0].id | https://openalex.org/T10286 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9955999851226807 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Information Retrieval and Search Behavior |
| topics[1].id | https://openalex.org/T12016 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9911999702453613 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1710 |
| topics[1].subfield.display_name | Information Systems |
| topics[1].display_name | Web Data Mining and Analysis |
| topics[2].id | https://openalex.org/T11550 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9886000156402588 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Text and Document Classification Technologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8438844680786133 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C184898388 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8214477300643921 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1435712 |
| concepts[1].display_name | Pairwise comparison |
| concepts[2].id | https://openalex.org/C189430467 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7665094137191772 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7293293 |
| concepts[2].display_name | Ranking (information retrieval) |
| concepts[3].id | https://openalex.org/C23123220 |
| concepts[3].level | 1 |
| concepts[3].score | 0.7367390394210815 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[3].display_name | Information retrieval |
| concepts[4].id | https://openalex.org/C86037889 |
| concepts[4].level | 3 |
| concepts[4].score | 0.58324134349823 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q4330127 |
| concepts[4].display_name | Learning to rank |
| concepts[5].id | https://openalex.org/C108583219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5223641991615295 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep learning |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5015163421630859 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C90673727 |
| concepts[7].level | 2 |
| concepts[7].score | 0.44347333908081055 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q901718 |
| concepts[7].display_name | Product (mathematics) |
| concepts[8].id | https://openalex.org/C2524010 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[8].display_name | Geometry |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8438844680786133 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/pairwise-comparison |
| keywords[1].score | 0.8214477300643921 |
| keywords[1].display_name | Pairwise comparison |
| keywords[2].id | https://openalex.org/keywords/ranking |
| keywords[2].score | 0.7665094137191772 |
| keywords[2].display_name | Ranking (information retrieval) |
| keywords[3].id | https://openalex.org/keywords/information-retrieval |
| keywords[3].score | 0.7367390394210815 |
| keywords[3].display_name | Information retrieval |
| keywords[4].id | https://openalex.org/keywords/learning-to-rank |
| keywords[4].score | 0.58324134349823 |
| keywords[4].display_name | Learning to rank |
| keywords[5].id | https://openalex.org/keywords/deep-learning |
| keywords[5].score | 0.5223641991615295 |
| keywords[5].display_name | Deep learning |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.5015163421630859 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/product |
| keywords[7].score | 0.44347333908081055 |
| keywords[7].display_name | Product (mathematics) |
| language | en |
| locations[0].id | doi:10.1145/3331184.3331434 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | https://dl.acm.org/doi/pdf/10.1145/3331184.3331434 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval |
| locations[0].landing_page_url | https://doi.org/10.1145/3331184.3331434 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100341968 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8224-7888 |
| authorships[0].author.display_name | Rui Li |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I72427458 |
| authorships[0].affiliations[0].raw_affiliation_string | JD.com, Mountain View, CA, USA |
| authorships[0].institutions[0].id | https://openalex.org/I72427458 |
| authorships[0].institutions[0].ror | https://ror.org/01a5v8x09 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I72427458 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | JDSU (United States) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rui Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | JD.com, Mountain View, CA, USA |
| authorships[1].author.id | https://openalex.org/A5061330865 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Yunjiang Jiang |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I72427458 |
| authorships[1].affiliations[0].raw_affiliation_string | JD.com, Mountain View, CA, USA |
| authorships[1].institutions[0].id | https://openalex.org/I72427458 |
| authorships[1].institutions[0].ror | https://ror.org/01a5v8x09 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I72427458 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | JDSU (United States) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yunjiang Jiang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | JD.com, Mountain View, CA, USA |
| authorships[2].author.id | https://openalex.org/A5010877916 |
| authorships[2].author.orcid | https://orcid.org/0009-0006-4551-7996 |
| authorships[2].author.display_name | Wen-Yun Yang |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I72427458 |
| authorships[2].affiliations[0].raw_affiliation_string | JD.com, Mountain View, CA, USA |
| authorships[2].institutions[0].id | https://openalex.org/I72427458 |
| authorships[2].institutions[0].ror | https://ror.org/01a5v8x09 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I72427458 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | JDSU (United States) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wenyun Yang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | JD.com, Mountain View, CA, USA |
| authorships[3].author.id | https://openalex.org/A5045596194 |
| authorships[3].author.orcid | https://orcid.org/0009-0003-9586-4652 |
| authorships[3].author.display_name | Guoyu Tang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210103986 |
| authorships[3].affiliations[0].raw_affiliation_string | JD.com, Beijing, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210103986 |
| authorships[3].institutions[0].ror | https://ror.org/01dkjkq64 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210103986 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Jingdong (China) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Guoyu Tang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | JD.com, Beijing, China |
| authorships[4].author.id | https://openalex.org/A5100714546 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2100-3860 |
| authorships[4].author.display_name | Songlin Wang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210103986 |
| authorships[4].affiliations[0].raw_affiliation_string | JD.com, Beijing, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210103986 |
| authorships[4].institutions[0].ror | https://ror.org/01dkjkq64 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210103986 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Jingdong (China) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Songlin Wang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | JD.com, Beijing, China |
| authorships[5].author.id | https://openalex.org/A5074529126 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3572-0046 |
| authorships[5].author.display_name | Chaoyi Ma |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210103986 |
| authorships[5].affiliations[0].raw_affiliation_string | JD.com, Beijing, China |
| authorships[5].institutions[0].id | https://openalex.org/I4210103986 |
| authorships[5].institutions[0].ror | https://ror.org/01dkjkq64 |
| authorships[5].institutions[0].type | company |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210103986 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Jingdong (China) |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Chaoyi Ma |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | JD.com, Beijing, China |
| authorships[6].author.id | https://openalex.org/A5070006732 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-3671-8650 |
| authorships[6].author.display_name | Wei He |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210103986 |
| authorships[6].affiliations[0].raw_affiliation_string | JD.com, Beijing, China |
| authorships[6].institutions[0].id | https://openalex.org/I4210103986 |
| authorships[6].institutions[0].ror | https://ror.org/01dkjkq64 |
| authorships[6].institutions[0].type | company |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210103986 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Jingdong (China) |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Wei He |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | JD.com, Beijing, China |
| authorships[7].author.id | https://openalex.org/A5057936279 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-3123-4200 |
| authorships[7].author.display_name | Xi Xiong |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210103986 |
| authorships[7].affiliations[0].raw_affiliation_string | JD.com, Beijing, China |
| authorships[7].institutions[0].id | https://openalex.org/I4210103986 |
| authorships[7].institutions[0].ror | https://ror.org/01dkjkq64 |
| authorships[7].institutions[0].type | company |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210103986 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Jingdong (China) |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Xi Xiong |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | JD.com, Beijing, China |
| authorships[8].author.id | https://openalex.org/A5101419454 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-5285-8565 |
| authorships[8].author.display_name | Yun Xiao |
| authorships[8].countries | CN |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I4210103986 |
| authorships[8].affiliations[0].raw_affiliation_string | JD.com, Mountain View, CA, China |
| authorships[8].institutions[0].id | https://openalex.org/I4210103986 |
| authorships[8].institutions[0].ror | https://ror.org/01dkjkq64 |
| authorships[8].institutions[0].type | company |
| authorships[8].institutions[0].lineage | https://openalex.org/I4210103986 |
| authorships[8].institutions[0].country_code | CN |
| authorships[8].institutions[0].display_name | Jingdong (China) |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Yun Xiao |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | JD.com, Mountain View, CA, China |
| authorships[9].author.id | https://openalex.org/A5038631529 |
| authorships[9].author.orcid | https://orcid.org/0009-0000-4969-2376 |
| authorships[9].author.display_name | Eric Zhao |
| authorships[9].countries | CN |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I4210103986 |
| authorships[9].affiliations[0].raw_affiliation_string | JD.com, Beijing, China |
| authorships[9].institutions[0].id | https://openalex.org/I4210103986 |
| authorships[9].institutions[0].ror | https://ror.org/01dkjkq64 |
| authorships[9].institutions[0].type | company |
| authorships[9].institutions[0].lineage | https://openalex.org/I4210103986 |
| authorships[9].institutions[0].country_code | CN |
| authorships[9].institutions[0].display_name | Jingdong (China) |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Eric Yihong Zhao |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | JD.com, Beijing, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://dl.acm.org/doi/pdf/10.1145/3331184.3331434 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | From Semantic Retrieval to Pairwise Ranking |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10286 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9955999851226807 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Information Retrieval and Search Behavior |
| related_works | https://openalex.org/W2011472225, https://openalex.org/W3000057026, https://openalex.org/W3048565508, https://openalex.org/W3163984363, https://openalex.org/W3127142483, https://openalex.org/W4385565564, https://openalex.org/W2898073868, https://openalex.org/W2138488530, https://openalex.org/W4378713479, https://openalex.org/W2971071571 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1145/3331184.3331434 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3331184.3331434 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval |
| best_oa_location.landing_page_url | https://doi.org/10.1145/3331184.3331434 |
| primary_location.id | doi:10.1145/3331184.3331434 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3331184.3331434 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval |
| primary_location.landing_page_url | https://doi.org/10.1145/3331184.3331434 |
| publication_date | 2019-07-18 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2295598076, https://openalex.org/W2136189984, https://openalex.org/W3102476541 |
| referenced_works_count | 3 |
| abstract_inverted_index.a | 31, 41, 46 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.at | 14, 66 |
| abstract_inverted_index.in | 11, 22 |
| abstract_inverted_index.of | 17, 30 |
| abstract_inverted_index.to | 5, 40, 57 |
| abstract_inverted_index.we | 26 |
| abstract_inverted_index.and | 45, 69 |
| abstract_inverted_index.are | 64 |
| abstract_inverted_index.one | 16 |
| abstract_inverted_index.the | 6, 18, 23, 28, 61 |
| abstract_inverted_index.two | 7 |
| abstract_inverted_index.deep | 2, 32, 48 |
| abstract_inverted_index.most | 8 |
| abstract_inverted_index.that | 35 |
| abstract_inverted_index.user | 54 |
| abstract_inverted_index.items | 39 |
| abstract_inverted_index.query | 42 |
| abstract_inverted_index.which | 51 |
| abstract_inverted_index.better | 65 |
| abstract_inverted_index.design | 29 |
| abstract_inverted_index.learns | 52 |
| abstract_inverted_index.models | 4 |
| abstract_inverted_index.search | 13, 59 |
| abstract_inverted_index.stages | 10 |
| abstract_inverted_index.subtle | 53 |
| abstract_inverted_index.system | 34 |
| abstract_inverted_index.within | 43 |
| abstract_inverted_index.world. | 24 |
| abstract_inverted_index.JD.com, | 15 |
| abstract_inverted_index.largest | 19 |
| abstract_inverted_index.outline | 27 |
| abstract_inverted_index.product | 12 |
| abstract_inverted_index.system, | 50 |
| abstract_inverted_index.Compared | 56 |
| abstract_inverted_index.learning | 3, 33 |
| abstract_inverted_index.pairwise | 47 |
| abstract_inverted_index.proposed | 62 |
| abstract_inverted_index.ranking, | 71 |
| abstract_inverted_index.relevant | 38 |
| abstract_inverted_index.semantic | 67 |
| abstract_inverted_index.systems, | 60 |
| abstract_inverted_index.achieving | 72 |
| abstract_inverted_index.important | 9 |
| abstract_inverted_index.introduce | 1 |
| abstract_inverted_index.platforms | 21 |
| abstract_inverted_index.retrieval | 68 |
| abstract_inverted_index.retrieves | 36 |
| abstract_inverted_index.approaches | 63 |
| abstract_inverted_index.e-commerce | 20 |
| abstract_inverted_index.re-ranking | 49 |
| abstract_inverted_index.significant | 73 |
| abstract_inverted_index.traditional | 58 |
| abstract_inverted_index.personalized | 70 |
| abstract_inverted_index.preferences. | 55 |
| abstract_inverted_index.semantically | 37 |
| abstract_inverted_index.Specifically, | 25 |
| abstract_inverted_index.improvements. | 74 |
| abstract_inverted_index.milliseconds, | 44 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 10 |
| citation_normalized_percentile.value | 0.82826625 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |