From Transformer to Transponder: Introducing Contextual Modulation Training for Residual Learning in LLMs Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.20944/preprints202506.0120.v2
Transformers are the backbone of state-of-the-art systems across language, vision, and multimodal learning tasks, yet the relevance scale of their functional blocks (self-attention and feed-forward networks) is typically constant across inputs and depth. This static design neglects context-sensitive regulation of information flow through residual pathways. We introduce the \emph{contextual modulator}: a lightweight, input-aware mechanism that can scale the outputs of linear sublayers within a block or the entire block output at token- and channel-level granularity. The modulator is implemented via compact parametric functions and adds negligible parameter overhead. Building on this idea, we propose Transponder, which integrates contextual modulators throughout Transformer blocks to endow functional residual architectures with fine-grained, input-adaptive control. Transponder provides evident improvement over six other scaling or normalization methods across LLaMA backbones ranging from 60M to 250M parameters, yielding consistent perplexity reductions with $<1\%$ additional parameters. Analysis reveals depth-, module-, and token-specific scaling patterns, indicating that learned modulators act as input-adaptive regulators of residual information flow. Transponder provides a simple, general mechanism to augment Transformer-based models with context-sensitive modulators, providing robust and significant performance improvements without substantial architectural changes.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.20944/preprints202506.0120.v2
- https://www.preprints.org/frontend/manuscript/55f5fbf963eb109088a18b0f1e291838/download_pub
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4414951370
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414951370Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.20944/preprints202506.0120.v2Digital Object Identifier
- Title
-
From Transformer to Transponder: Introducing Contextual Modulation Training for Residual Learning in LLMsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-30Full publication date if available
- Authors
-
Yingtao Zhang, Wanyi Gu, Wenhao Hu, Jianguo Li, Carlo Vittorio CannistraciList of authors in order
- Landing page
-
https://doi.org/10.20944/preprints202506.0120.v2Publisher landing page
- PDF URL
-
https://www.preprints.org/frontend/manuscript/55f5fbf963eb109088a18b0f1e291838/download_pubDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.preprints.org/frontend/manuscript/55f5fbf963eb109088a18b0f1e291838/download_pubDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414951370 |
|---|---|
| doi | https://doi.org/10.20944/preprints202506.0120.v2 |
| ids.doi | https://doi.org/10.20944/preprints202506.0120.v2 |
| ids.openalex | https://openalex.org/W4414951370 |
| fwci | 0.0 |
| type | preprint |
| title | From Transformer to Transponder: Introducing Contextual Modulation Training for Residual Learning in LLMs |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13844 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 0.6690000295639038 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3304 |
| topics[0].subfield.display_name | Education |
| topics[0].display_name | Higher Education Learning Practices |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.20944/preprints202506.0120.v2 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S6309402219 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Preprints.org |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.preprints.org/frontend/manuscript/55f5fbf963eb109088a18b0f1e291838/download_pub |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.20944/preprints202506.0120.v2 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5032429023 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8587-9645 |
| authorships[0].author.display_name | Yingtao Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yingtao Zhang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101829505 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6430-1836 |
| authorships[1].author.display_name | Wanyi Gu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wenqi Gu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5074406685 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1511-2614 |
| authorships[2].author.display_name | Wenhao Hu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wen Hu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100368363 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0282-7891 |
| authorships[3].author.display_name | Jianguo Li |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jianguo Li |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5007730744 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0100-8410 |
| authorships[4].author.display_name | Carlo Vittorio Cannistraci |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Carlo Vittorio Cannistraci |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.preprints.org/frontend/manuscript/55f5fbf963eb109088a18b0f1e291838/download_pub |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | From Transformer to Transponder: Introducing Contextual Modulation Training for Residual Learning in LLMs |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13844 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 0.6690000295639038 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3304 |
| primary_topic.subfield.display_name | Education |
| primary_topic.display_name | Higher Education Learning Practices |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.20944/preprints202506.0120.v2 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S6309402219 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Preprints.org |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.preprints.org/frontend/manuscript/55f5fbf963eb109088a18b0f1e291838/download_pub |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.20944/preprints202506.0120.v2 |
| primary_location.id | doi:10.20944/preprints202506.0120.v2 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S6309402219 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Preprints.org |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.preprints.org/frontend/manuscript/55f5fbf963eb109088a18b0f1e291838/download_pub |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.20944/preprints202506.0120.v2 |
| publication_date | 2025-09-30 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 50, 63, 161 |
| abstract_inverted_index.We | 45 |
| abstract_inverted_index.as | 152 |
| abstract_inverted_index.at | 70 |
| abstract_inverted_index.is | 26, 77 |
| abstract_inverted_index.of | 4, 18, 39, 59, 155 |
| abstract_inverted_index.on | 89 |
| abstract_inverted_index.or | 65, 119 |
| abstract_inverted_index.to | 102, 128, 165 |
| abstract_inverted_index.we | 92 |
| abstract_inverted_index.60M | 127 |
| abstract_inverted_index.The | 75 |
| abstract_inverted_index.act | 151 |
| abstract_inverted_index.and | 10, 23, 31, 72, 83, 143, 174 |
| abstract_inverted_index.are | 1 |
| abstract_inverted_index.can | 55 |
| abstract_inverted_index.six | 116 |
| abstract_inverted_index.the | 2, 15, 47, 57, 66 |
| abstract_inverted_index.via | 79 |
| abstract_inverted_index.yet | 14 |
| abstract_inverted_index.250M | 129 |
| abstract_inverted_index.This | 33 |
| abstract_inverted_index.adds | 84 |
| abstract_inverted_index.flow | 41 |
| abstract_inverted_index.from | 126 |
| abstract_inverted_index.over | 115 |
| abstract_inverted_index.that | 54, 148 |
| abstract_inverted_index.this | 90 |
| abstract_inverted_index.with | 107, 135, 169 |
| abstract_inverted_index.LLaMA | 123 |
| abstract_inverted_index.block | 64, 68 |
| abstract_inverted_index.endow | 103 |
| abstract_inverted_index.flow. | 158 |
| abstract_inverted_index.idea, | 91 |
| abstract_inverted_index.other | 117 |
| abstract_inverted_index.scale | 17, 56 |
| abstract_inverted_index.their | 19 |
| abstract_inverted_index.which | 95 |
| abstract_inverted_index.across | 7, 29, 122 |
| abstract_inverted_index.blocks | 21, 101 |
| abstract_inverted_index.depth. | 32 |
| abstract_inverted_index.design | 35 |
| abstract_inverted_index.entire | 67 |
| abstract_inverted_index.inputs | 30 |
| abstract_inverted_index.linear | 60 |
| abstract_inverted_index.models | 168 |
| abstract_inverted_index.output | 69 |
| abstract_inverted_index.robust | 173 |
| abstract_inverted_index.static | 34 |
| abstract_inverted_index.tasks, | 13 |
| abstract_inverted_index.token- | 71 |
| abstract_inverted_index.within | 62 |
| abstract_inverted_index.augment | 166 |
| abstract_inverted_index.compact | 80 |
| abstract_inverted_index.depth-, | 141 |
| abstract_inverted_index.evident | 113 |
| abstract_inverted_index.general | 163 |
| abstract_inverted_index.learned | 149 |
| abstract_inverted_index.methods | 121 |
| abstract_inverted_index.outputs | 58 |
| abstract_inverted_index.propose | 93 |
| abstract_inverted_index.ranging | 125 |
| abstract_inverted_index.reveals | 140 |
| abstract_inverted_index.scaling | 118, 145 |
| abstract_inverted_index.simple, | 162 |
| abstract_inverted_index.systems | 6 |
| abstract_inverted_index.through | 42 |
| abstract_inverted_index.vision, | 9 |
| abstract_inverted_index.without | 178 |
| abstract_inverted_index.Analysis | 139 |
| abstract_inverted_index.Building | 88 |
| abstract_inverted_index.backbone | 3 |
| abstract_inverted_index.changes. | 181 |
| abstract_inverted_index.constant | 28 |
| abstract_inverted_index.control. | 110 |
| abstract_inverted_index.learning | 12 |
| abstract_inverted_index.module-, | 142 |
| abstract_inverted_index.neglects | 36 |
| abstract_inverted_index.provides | 112, 160 |
| abstract_inverted_index.residual | 43, 105, 156 |
| abstract_inverted_index.yielding | 131 |
| abstract_inverted_index.backbones | 124 |
| abstract_inverted_index.functions | 82 |
| abstract_inverted_index.introduce | 46 |
| abstract_inverted_index.language, | 8 |
| abstract_inverted_index.mechanism | 53, 164 |
| abstract_inverted_index.modulator | 76 |
| abstract_inverted_index.networks) | 25 |
| abstract_inverted_index.overhead. | 87 |
| abstract_inverted_index.parameter | 86 |
| abstract_inverted_index.pathways. | 44 |
| abstract_inverted_index.patterns, | 146 |
| abstract_inverted_index.providing | 172 |
| abstract_inverted_index.relevance | 16 |
| abstract_inverted_index.sublayers | 61 |
| abstract_inverted_index.typically | 27 |
| abstract_inverted_index.additional | 137 |
| abstract_inverted_index.consistent | 132 |
| abstract_inverted_index.contextual | 97 |
| abstract_inverted_index.functional | 20, 104 |
| abstract_inverted_index.indicating | 147 |
| abstract_inverted_index.integrates | 96 |
| abstract_inverted_index.modulators | 98, 150 |
| abstract_inverted_index.multimodal | 11 |
| abstract_inverted_index.negligible | 85 |
| abstract_inverted_index.parametric | 81 |
| abstract_inverted_index.perplexity | 133 |
| abstract_inverted_index.reductions | 134 |
| abstract_inverted_index.regulation | 38 |
| abstract_inverted_index.regulators | 154 |
| abstract_inverted_index.throughout | 99 |
| abstract_inverted_index.Transformer | 100 |
| abstract_inverted_index.Transponder | 111, 159 |
| abstract_inverted_index.implemented | 78 |
| abstract_inverted_index.improvement | 114 |
| abstract_inverted_index.information | 40, 157 |
| abstract_inverted_index.input-aware | 52 |
| abstract_inverted_index.modulators, | 171 |
| abstract_inverted_index.modulator}: | 49 |
| abstract_inverted_index.parameters, | 130 |
| abstract_inverted_index.parameters. | 138 |
| abstract_inverted_index.performance | 176 |
| abstract_inverted_index.significant | 175 |
| abstract_inverted_index.substantial | 179 |
| abstract_inverted_index.Transformers | 0 |
| abstract_inverted_index.Transponder, | 94 |
| abstract_inverted_index.feed-forward | 24 |
| abstract_inverted_index.granularity. | 74 |
| abstract_inverted_index.improvements | 177 |
| abstract_inverted_index.lightweight, | 51 |
| abstract_inverted_index.$&lt;1\%$ | 136 |
| abstract_inverted_index.architectural | 180 |
| abstract_inverted_index.architectures | 106 |
| abstract_inverted_index.channel-level | 73 |
| abstract_inverted_index.fine-grained, | 108 |
| abstract_inverted_index.normalization | 120 |
| abstract_inverted_index.input-adaptive | 109, 153 |
| abstract_inverted_index.token-specific | 144 |
| abstract_inverted_index.(self-attention | 22 |
| abstract_inverted_index.\emph{contextual | 48 |
| abstract_inverted_index.state-of-the-art | 5 |
| abstract_inverted_index.Transformer-based | 167 |
| abstract_inverted_index.context-sensitive | 37, 170 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.45412519 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |