From Voxels to Viruses: Using Deep Learning and Crowdsourcing to Understand a Virus Factory Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.5334/cstp.739
Many bioimaging research projects require objects of interest to be identified, located, and then traced to allow quantitative measurement. Depending on the complexity of the system and imaging, instance segmentation is often done manually, and automated approaches still require weeks to months of an individual’s time to acquire the necessary training data for AI models. As such, there is a strong need to develop approaches for instance segmentation that minimize the use of expert annotation while maintaining quality on challenging image analysis problems. Herein, we present our work on a citizen science project we ran called Science Scribbler: Virus Factory on the Zooniverse platform, in which citizen scientists annotated a cryo-electron tomography volume by locating and categorising viruses using point-based annotations instead of manually drawing outlines. One crowdsourcing workflow produced a database of virus locations, and the other workflow produced a set of classifications of those locations. Together, this allowed mask annotation to be generated for training a deep learning–based segmentation model. From this model, segmentations were produced that allowed for measurements such as counts of the viruses by virus class. The application of citizen science–driven crowdsourcing to the generation of instance segmentations of volumetric bioimages is a step towards developing annotation-efficient segmentation workflows for bioimaging data. This approach aligns with the growing interest in citizen science initiatives that combine the collective intelligence of volunteers with AI to tackle complex problems while involving the public with research that is being undertaken in these important areas of science.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5334/cstp.739
- OA Status
- gold
- References
- 30
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405191146
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405191146Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5334/cstp.739Digital Object Identifier
- Title
-
From Voxels to Viruses: Using Deep Learning and Crowdsourcing to Understand a Virus FactoryWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-09Full publication date if available
- Authors
-
Avery Pennington, Oliver N. F. King, Win Tun, Mark Boyce, Geoff Sutton, David I. Stuart, Mark Basham, Michele C. DarrowList of authors in order
- Landing page
-
https://doi.org/10.5334/cstp.739Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5334/cstp.739Direct OA link when available
- Concepts
-
Crowdsourcing, Factory (object-oriented programming), Computer science, Biology, Artificial intelligence, Virology, World Wide Web, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
30Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405191146 |
|---|---|
| doi | https://doi.org/10.5334/cstp.739 |
| ids.doi | https://doi.org/10.5334/cstp.739 |
| ids.openalex | https://openalex.org/W4405191146 |
| fwci | 0.0 |
| type | article |
| title | From Voxels to Viruses: Using Deep Learning and Crowdsourcing to Understand a Virus Factory |
| awards[0].id | https://openalex.org/G787615749 |
| awards[0].funder_id | https://openalex.org/F4320311904 |
| awards[0].display_name | |
| awards[0].funder_award_id | 220526/Z/20/Z |
| awards[0].funder_display_name | Wellcome Trust |
| awards[1].id | https://openalex.org/G6524425806 |
| awards[1].funder_id | https://openalex.org/F4320311904 |
| awards[1].display_name | |
| awards[1].funder_award_id | 212980/Z/18/Z |
| awards[1].funder_display_name | Wellcome Trust |
| biblio.issue | 1 |
| biblio.volume | 9 |
| biblio.last_page | 37 |
| biblio.first_page | 37 |
| topics[0].id | https://openalex.org/T11636 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9857000112533569 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2718 |
| topics[0].subfield.display_name | Health Informatics |
| topics[0].display_name | Artificial Intelligence in Healthcare and Education |
| topics[1].id | https://openalex.org/T11775 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9593999981880188 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | COVID-19 diagnosis using AI |
| topics[2].id | https://openalex.org/T10883 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.9355999827384949 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3311 |
| topics[2].subfield.display_name | Safety Research |
| topics[2].display_name | Ethics and Social Impacts of AI |
| funders[0].id | https://openalex.org/F4320311904 |
| funders[0].ror | https://ror.org/029chgv08 |
| funders[0].display_name | Wellcome Trust |
| is_xpac | False |
| apc_list.value | 500 |
| apc_list.currency | GBP |
| apc_list.value_usd | 613 |
| apc_paid.value | 500 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 613 |
| concepts[0].id | https://openalex.org/C62230096 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7547019720077515 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q275969 |
| concepts[0].display_name | Crowdsourcing |
| concepts[1].id | https://openalex.org/C40149104 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7527031898498535 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5620977 |
| concepts[1].display_name | Factory (object-oriented programming) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.38634711503982544 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C86803240 |
| concepts[3].level | 0 |
| concepts[3].score | 0.35338136553764343 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[3].display_name | Biology |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.34911566972732544 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C159047783 |
| concepts[5].level | 1 |
| concepts[5].score | 0.32554861903190613 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7215 |
| concepts[5].display_name | Virology |
| concepts[6].id | https://openalex.org/C136764020 |
| concepts[6].level | 1 |
| concepts[6].score | 0.09565335512161255 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[6].display_name | World Wide Web |
| concepts[7].id | https://openalex.org/C199360897 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[7].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/crowdsourcing |
| keywords[0].score | 0.7547019720077515 |
| keywords[0].display_name | Crowdsourcing |
| keywords[1].id | https://openalex.org/keywords/factory |
| keywords[1].score | 0.7527031898498535 |
| keywords[1].display_name | Factory (object-oriented programming) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.38634711503982544 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/biology |
| keywords[3].score | 0.35338136553764343 |
| keywords[3].display_name | Biology |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.34911566972732544 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/virology |
| keywords[5].score | 0.32554861903190613 |
| keywords[5].display_name | Virology |
| keywords[6].id | https://openalex.org/keywords/world-wide-web |
| keywords[6].score | 0.09565335512161255 |
| keywords[6].display_name | World Wide Web |
| language | en |
| locations[0].id | doi:10.5334/cstp.739 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210174627 |
| locations[0].source.issn | 2057-4991 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2057-4991 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Citizen Science Theory and Practice |
| locations[0].source.host_organization | https://openalex.org/P4310320511 |
| locations[0].source.host_organization_name | Ubiquity Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320511 |
| locations[0].source.host_organization_lineage_names | Ubiquity Press |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Citizen Science: Theory and Practice |
| locations[0].landing_page_url | https://doi.org/10.5334/cstp.739 |
| locations[1].id | pmh:oai:doaj.org/article:c7b85ec4d16e4096953989d1438c4f5a |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Citizen Science: Theory and Practice, Vol 9, Iss 1, Pp 37-37 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/c7b85ec4d16e4096953989d1438c4f5a |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5005423914 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1179-4243 |
| authorships[0].author.display_name | Avery Pennington |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Avery Pennington |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5031870070 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6152-7207 |
| authorships[1].author.display_name | Oliver N. F. King |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Oliver N. F. King |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5078649797 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0991-8785 |
| authorships[2].author.display_name | Win Tun |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Win Min Tun |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5063484513 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1687-4848 |
| authorships[3].author.display_name | Mark Boyce |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Mark Boyce |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5034979136 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Geoff Sutton |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Geoff Sutton |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5056016799 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3426-4210 |
| authorships[5].author.display_name | David I. Stuart |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | David I. Stuart |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5069273077 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-8438-1415 |
| authorships[6].author.display_name | Mark Basham |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Mark Basham |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5068783077 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-6259-1684 |
| authorships[7].author.display_name | Michele C. Darrow |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Michele C. Darrow |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5334/cstp.739 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | From Voxels to Viruses: Using Deep Learning and Crowdsourcing to Understand a Virus Factory |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11636 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9857000112533569 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2718 |
| primary_topic.subfield.display_name | Health Informatics |
| primary_topic.display_name | Artificial Intelligence in Healthcare and Education |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W3032998312, https://openalex.org/W135177976, https://openalex.org/W4384486036, https://openalex.org/W1503094549, https://openalex.org/W2337920774, https://openalex.org/W4286908577, https://openalex.org/W2886410948, https://openalex.org/W2025875869, https://openalex.org/W4318823662 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.5334/cstp.739 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210174627 |
| best_oa_location.source.issn | 2057-4991 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2057-4991 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Citizen Science Theory and Practice |
| best_oa_location.source.host_organization | https://openalex.org/P4310320511 |
| best_oa_location.source.host_organization_name | Ubiquity Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320511 |
| best_oa_location.source.host_organization_lineage_names | Ubiquity Press |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Citizen Science: Theory and Practice |
| best_oa_location.landing_page_url | https://doi.org/10.5334/cstp.739 |
| primary_location.id | doi:10.5334/cstp.739 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210174627 |
| primary_location.source.issn | 2057-4991 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2057-4991 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Citizen Science Theory and Practice |
| primary_location.source.host_organization | https://openalex.org/P4310320511 |
| primary_location.source.host_organization_name | Ubiquity Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320511 |
| primary_location.source.host_organization_lineage_names | Ubiquity Press |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Citizen Science: Theory and Practice |
| primary_location.landing_page_url | https://doi.org/10.5334/cstp.739 |
| publication_date | 2024-12-09 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W1508411580, https://openalex.org/W3143992933, https://openalex.org/W3007327257, https://openalex.org/W2950132387, https://openalex.org/W6605187182, https://openalex.org/W4317390343, https://openalex.org/W2750134109, https://openalex.org/W1901492489, https://openalex.org/W4296705850, https://openalex.org/W2623133424, https://openalex.org/W1673310716, https://openalex.org/W2953914369, https://openalex.org/W2755930428, https://openalex.org/W2404809610, https://openalex.org/W3201820946, https://openalex.org/W2040156859, https://openalex.org/W2976398475, https://openalex.org/W2592107721, https://openalex.org/W2601243251, https://openalex.org/W3184428016, https://openalex.org/W3129883142, https://openalex.org/W4221099940, https://openalex.org/W1901129140, https://openalex.org/W3010709034, https://openalex.org/W2888358068, https://openalex.org/W3158432719, https://openalex.org/W3035598360, https://openalex.org/W4230327365, https://openalex.org/W3204294504, https://openalex.org/W2810520599 |
| referenced_works_count | 30 |
| abstract_inverted_index.a | 59, 89, 109, 130, 140, 157, 197 |
| abstract_inverted_index.AI | 53, 226 |
| abstract_inverted_index.As | 55 |
| abstract_inverted_index.an | 43 |
| abstract_inverted_index.as | 173 |
| abstract_inverted_index.be | 9, 153 |
| abstract_inverted_index.by | 113, 178 |
| abstract_inverted_index.in | 104, 214, 241 |
| abstract_inverted_index.is | 30, 58, 196, 238 |
| abstract_inverted_index.of | 6, 23, 42, 72, 122, 132, 142, 144, 175, 183, 190, 193, 223, 245 |
| abstract_inverted_index.on | 20, 78, 88, 100 |
| abstract_inverted_index.to | 8, 15, 40, 46, 62, 152, 187, 227 |
| abstract_inverted_index.we | 84, 93 |
| abstract_inverted_index.One | 126 |
| abstract_inverted_index.The | 181 |
| abstract_inverted_index.and | 12, 26, 34, 115, 135 |
| abstract_inverted_index.for | 52, 65, 155, 170, 204 |
| abstract_inverted_index.our | 86 |
| abstract_inverted_index.ran | 94 |
| abstract_inverted_index.set | 141 |
| abstract_inverted_index.the | 21, 24, 48, 70, 101, 136, 176, 188, 211, 220, 233 |
| abstract_inverted_index.use | 71 |
| abstract_inverted_index.From | 162 |
| abstract_inverted_index.Many | 0 |
| abstract_inverted_index.This | 207 |
| abstract_inverted_index.data | 51 |
| abstract_inverted_index.deep | 158 |
| abstract_inverted_index.done | 32 |
| abstract_inverted_index.mask | 150 |
| abstract_inverted_index.need | 61 |
| abstract_inverted_index.step | 198 |
| abstract_inverted_index.such | 172 |
| abstract_inverted_index.that | 68, 168, 218, 237 |
| abstract_inverted_index.then | 13 |
| abstract_inverted_index.this | 148, 163 |
| abstract_inverted_index.time | 45 |
| abstract_inverted_index.were | 166 |
| abstract_inverted_index.with | 210, 225, 235 |
| abstract_inverted_index.work | 87 |
| abstract_inverted_index.Virus | 98 |
| abstract_inverted_index.allow | 16 |
| abstract_inverted_index.areas | 244 |
| abstract_inverted_index.being | 239 |
| abstract_inverted_index.data. | 206 |
| abstract_inverted_index.image | 80 |
| abstract_inverted_index.often | 31 |
| abstract_inverted_index.other | 137 |
| abstract_inverted_index.still | 37 |
| abstract_inverted_index.such, | 56 |
| abstract_inverted_index.there | 57 |
| abstract_inverted_index.these | 242 |
| abstract_inverted_index.those | 145 |
| abstract_inverted_index.using | 118 |
| abstract_inverted_index.virus | 133, 179 |
| abstract_inverted_index.weeks | 39 |
| abstract_inverted_index.which | 105 |
| abstract_inverted_index.while | 75, 231 |
| abstract_inverted_index.aligns | 209 |
| abstract_inverted_index.called | 95 |
| abstract_inverted_index.class. | 180 |
| abstract_inverted_index.counts | 174 |
| abstract_inverted_index.expert | 73 |
| abstract_inverted_index.model, | 164 |
| abstract_inverted_index.model. | 161 |
| abstract_inverted_index.months | 41 |
| abstract_inverted_index.public | 234 |
| abstract_inverted_index.strong | 60 |
| abstract_inverted_index.system | 25 |
| abstract_inverted_index.tackle | 228 |
| abstract_inverted_index.traced | 14 |
| abstract_inverted_index.volume | 112 |
| abstract_inverted_index.Factory | 99 |
| abstract_inverted_index.Herein, | 83 |
| abstract_inverted_index.Science | 96 |
| abstract_inverted_index.acquire | 47 |
| abstract_inverted_index.allowed | 149, 169 |
| abstract_inverted_index.citizen | 90, 106, 184, 215 |
| abstract_inverted_index.combine | 219 |
| abstract_inverted_index.complex | 229 |
| abstract_inverted_index.develop | 63 |
| abstract_inverted_index.drawing | 124 |
| abstract_inverted_index.growing | 212 |
| abstract_inverted_index.instead | 121 |
| abstract_inverted_index.models. | 54 |
| abstract_inverted_index.objects | 5 |
| abstract_inverted_index.present | 85 |
| abstract_inverted_index.project | 92 |
| abstract_inverted_index.quality | 77 |
| abstract_inverted_index.require | 4, 38 |
| abstract_inverted_index.science | 91, 216 |
| abstract_inverted_index.towards | 199 |
| abstract_inverted_index.viruses | 117, 177 |
| abstract_inverted_index.analysis | 81 |
| abstract_inverted_index.approach | 208 |
| abstract_inverted_index.database | 131 |
| abstract_inverted_index.imaging, | 27 |
| abstract_inverted_index.instance | 28, 66, 191 |
| abstract_inverted_index.interest | 7, 213 |
| abstract_inverted_index.located, | 11 |
| abstract_inverted_index.locating | 114 |
| abstract_inverted_index.manually | 123 |
| abstract_inverted_index.minimize | 69 |
| abstract_inverted_index.problems | 230 |
| abstract_inverted_index.produced | 129, 139, 167 |
| abstract_inverted_index.projects | 3 |
| abstract_inverted_index.research | 2, 236 |
| abstract_inverted_index.science. | 246 |
| abstract_inverted_index.training | 50, 156 |
| abstract_inverted_index.workflow | 128, 138 |
| abstract_inverted_index.Depending | 19 |
| abstract_inverted_index.Together, | 147 |
| abstract_inverted_index.annotated | 108 |
| abstract_inverted_index.automated | 35 |
| abstract_inverted_index.bioimages | 195 |
| abstract_inverted_index.generated | 154 |
| abstract_inverted_index.important | 243 |
| abstract_inverted_index.involving | 232 |
| abstract_inverted_index.manually, | 33 |
| abstract_inverted_index.necessary | 49 |
| abstract_inverted_index.outlines. | 125 |
| abstract_inverted_index.platform, | 103 |
| abstract_inverted_index.problems. | 82 |
| abstract_inverted_index.workflows | 203 |
| abstract_inverted_index.Scribbler: | 97 |
| abstract_inverted_index.Zooniverse | 102 |
| abstract_inverted_index.annotation | 74, 151 |
| abstract_inverted_index.approaches | 36, 64 |
| abstract_inverted_index.bioimaging | 1, 205 |
| abstract_inverted_index.collective | 221 |
| abstract_inverted_index.complexity | 22 |
| abstract_inverted_index.developing | 200 |
| abstract_inverted_index.generation | 189 |
| abstract_inverted_index.locations, | 134 |
| abstract_inverted_index.locations. | 146 |
| abstract_inverted_index.scientists | 107 |
| abstract_inverted_index.tomography | 111 |
| abstract_inverted_index.undertaken | 240 |
| abstract_inverted_index.volumetric | 194 |
| abstract_inverted_index.volunteers | 224 |
| abstract_inverted_index.annotations | 120 |
| abstract_inverted_index.application | 182 |
| abstract_inverted_index.challenging | 79 |
| abstract_inverted_index.identified, | 10 |
| abstract_inverted_index.initiatives | 217 |
| abstract_inverted_index.maintaining | 76 |
| abstract_inverted_index.point-based | 119 |
| abstract_inverted_index.categorising | 116 |
| abstract_inverted_index.intelligence | 222 |
| abstract_inverted_index.measurement. | 18 |
| abstract_inverted_index.measurements | 171 |
| abstract_inverted_index.quantitative | 17 |
| abstract_inverted_index.segmentation | 29, 67, 160, 202 |
| abstract_inverted_index.crowdsourcing | 127, 186 |
| abstract_inverted_index.cryo-electron | 110 |
| abstract_inverted_index.segmentations | 165, 192 |
| abstract_inverted_index.individual’s | 44 |
| abstract_inverted_index.classifications | 143 |
| abstract_inverted_index.learning–based | 159 |
| abstract_inverted_index.science–driven | 185 |
| abstract_inverted_index.annotation-efficient | 201 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.49000000953674316 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.19476373 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |