Frostman random variables, entropy inequalities, and applications Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2507.15196
We introduce Frostman conditions for bivariate random variables and study discretized entropy sum-product phenomena in both independent and dependent settings. Fix $0 < s < 1$, and let $(X,Y)$ be a bivariate real random variable with bounded support, whose distribution satisfies a Frostman condition of dimension $s$. Let $ϕ(x,y)$ be a polynomial obtained from a diagonal polynomial $ρ_1(x)+ρ_2(y)\in \mathbb{R}[x, y]$ of degree $d\ge 2$ by applying an invertible rational linear change of variables in $(x,y)$. We show that there exists $ε= ε(ϕ,s)>0$ such that $$ \max\{H_n(X+Y), H_n(ϕ(X,Y))\} \geq n(s+ε) $$ for all sufficiently large $n$, where the precise assumptions on $(X,Y)$ depend on the Frostman level. The proof introduces a novel multi-step entropy framework, combining the submodularity formula, the discretized entropy Balog-Szemerédi-Gowers theorem, and state-of-the-art results on the Falconer distance problem, to reduce general forms to a diagonal core case. As an application, we obtain discretized sum-product type estimates. In particular, for a $δ$-separated set $A\subseteq [0, 1]$ of cardinality $δ^{-s}$, satisfying certain non-concentration conditions, and a dense subset $G\subseteq A\times A$, there exists $ε=ε(s, ϕ)>0$ such that $$ E_δ(A+_GA) + E_δ(ϕ_G(A, A)) \ggδ^{-ε}(\#A) $$ for all $δ$ small enough. Here $E_δ(A)$ denotes the $δ$-covering number of $A$, $A+_GA:=\{x+y\colon (x, y)\in G\}$, and $ϕ_G(A,A):=\{ϕ(x, y)\colon (x, y)\in G\}$.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2507.15196
- https://arxiv.org/pdf/2507.15196
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416716172
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416716172Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2507.15196Digital Object Identifier
- Title
-
Frostman random variables, entropy inequalities, and applicationsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-21Full publication date if available
- Authors
-
Alex Iosevich, Thang Pham, Hồng Quân Nguyễn, Steven Senger, Bing XueList of authors in order
- Landing page
-
https://arxiv.org/abs/2507.15196Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2507.15196Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2507.15196Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416716172 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2507.15196 |
| ids.doi | https://doi.org/10.48550/arxiv.2507.15196 |
| ids.openalex | https://openalex.org/W4416716172 |
| fwci | |
| type | preprint |
| title | Frostman random variables, entropy inequalities, and applications |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2507.15196 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2507.15196 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2507.15196 |
| locations[1].id | doi:10.48550/arxiv.2507.15196 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2507.15196 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5071497714 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9074-9864 |
| authorships[0].author.display_name | Alex Iosevich |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Iosevich, Alex |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5001828232 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7600-7450 |
| authorships[1].author.display_name | Thang Pham |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Pham, Thang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5089584186 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7685-8191 |
| authorships[2].author.display_name | Hồng Quân Nguyễn |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Quan, Nguyen Dac |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5020306330 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2912-4464 |
| authorships[3].author.display_name | Steven Senger |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Senger, Steven |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5101472713 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Bing Xue |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Xue, Boqing |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2507.15196 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Frostman random variables, entropy inequalities, and applications |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T21:21:43.541631 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2507.15196 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2507.15196 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2507.15196 |
| primary_location.id | pmh:oai:arXiv.org:2507.15196 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2507.15196 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2507.15196 |
| publication_date | 2025-07-21 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.+ | 180 |
| abstract_inverted_index.a | 30, 41, 50, 54, 109, 136, 152, 166 |
| abstract_inverted_index.s | 23 |
| abstract_inverted_index.$$ | 84, 89, 178, 184 |
| abstract_inverted_index.$0 | 21 |
| abstract_inverted_index.2$ | 63 |
| abstract_inverted_index.As | 140 |
| abstract_inverted_index.In | 149 |
| abstract_inverted_index.We | 0, 75 |
| abstract_inverted_index.an | 66, 141 |
| abstract_inverted_index.be | 29, 49 |
| abstract_inverted_index.by | 64 |
| abstract_inverted_index.in | 14, 73 |
| abstract_inverted_index.of | 44, 60, 71, 158, 196 |
| abstract_inverted_index.on | 99, 102, 126 |
| abstract_inverted_index.to | 131, 135 |
| abstract_inverted_index.we | 143 |
| abstract_inverted_index.(x, | 199, 205 |
| abstract_inverted_index.1$, | 25 |
| abstract_inverted_index.1]$ | 157 |
| abstract_inverted_index.A$, | 171 |
| abstract_inverted_index.A)) | 182 |
| abstract_inverted_index.Fix | 20 |
| abstract_inverted_index.Let | 47 |
| abstract_inverted_index.The | 106 |
| abstract_inverted_index.[0, | 156 |
| abstract_inverted_index.all | 91, 186 |
| abstract_inverted_index.and | 8, 17, 26, 123, 165, 202 |
| abstract_inverted_index.for | 4, 90, 151, 185 |
| abstract_inverted_index.let | 27 |
| abstract_inverted_index.set | 154 |
| abstract_inverted_index.the | 96, 103, 115, 118, 127, 193 |
| abstract_inverted_index.y]$ | 59 |
| abstract_inverted_index.$A$, | 197 |
| abstract_inverted_index.$n$, | 94 |
| abstract_inverted_index.$s$. | 46 |
| abstract_inverted_index.$δ$ | 187 |
| abstract_inverted_index.$ε= | 80 |
| abstract_inverted_index.< | 22, 24 |
| abstract_inverted_index.Here | 190 |
| abstract_inverted_index.\geq | 87 |
| abstract_inverted_index.both | 15 |
| abstract_inverted_index.core | 138 |
| abstract_inverted_index.from | 53 |
| abstract_inverted_index.real | 32 |
| abstract_inverted_index.show | 76 |
| abstract_inverted_index.such | 82, 176 |
| abstract_inverted_index.that | 77, 83, 177 |
| abstract_inverted_index.type | 147 |
| abstract_inverted_index.with | 35 |
| abstract_inverted_index.$d\ge | 62 |
| abstract_inverted_index.G\}$, | 201 |
| abstract_inverted_index.G\}$. | 207 |
| abstract_inverted_index.case. | 139 |
| abstract_inverted_index.dense | 167 |
| abstract_inverted_index.forms | 134 |
| abstract_inverted_index.large | 93 |
| abstract_inverted_index.novel | 110 |
| abstract_inverted_index.proof | 107 |
| abstract_inverted_index.small | 188 |
| abstract_inverted_index.study | 9 |
| abstract_inverted_index.there | 78, 172 |
| abstract_inverted_index.where | 95 |
| abstract_inverted_index.whose | 38 |
| abstract_inverted_index.y)\in | 200, 206 |
| abstract_inverted_index.change | 70 |
| abstract_inverted_index.degree | 61 |
| abstract_inverted_index.depend | 101 |
| abstract_inverted_index.exists | 79, 173 |
| abstract_inverted_index.level. | 105 |
| abstract_inverted_index.linear | 69 |
| abstract_inverted_index.number | 195 |
| abstract_inverted_index.obtain | 144 |
| abstract_inverted_index.random | 6, 33 |
| abstract_inverted_index.reduce | 132 |
| abstract_inverted_index.subset | 168 |
| abstract_inverted_index.$(X,Y)$ | 28, 100 |
| abstract_inverted_index.A\times | 170 |
| abstract_inverted_index.bounded | 36 |
| abstract_inverted_index.certain | 162 |
| abstract_inverted_index.denotes | 192 |
| abstract_inverted_index.enough. | 189 |
| abstract_inverted_index.entropy | 11, 112, 120 |
| abstract_inverted_index.general | 133 |
| abstract_inverted_index.n(s+ε) | 88 |
| abstract_inverted_index.precise | 97 |
| abstract_inverted_index.results | 125 |
| abstract_inverted_index.$(x,y)$. | 74 |
| abstract_inverted_index.Falconer | 128 |
| abstract_inverted_index.Frostman | 2, 42, 104 |
| abstract_inverted_index.applying | 65 |
| abstract_inverted_index.diagonal | 55, 137 |
| abstract_inverted_index.distance | 129 |
| abstract_inverted_index.formula, | 117 |
| abstract_inverted_index.obtained | 52 |
| abstract_inverted_index.problem, | 130 |
| abstract_inverted_index.rational | 68 |
| abstract_inverted_index.support, | 37 |
| abstract_inverted_index.theorem, | 122 |
| abstract_inverted_index.variable | 34 |
| abstract_inverted_index.y)\colon | 204 |
| abstract_inverted_index.$E_δ(A)$ | 191 |
| abstract_inverted_index.$ε=ε(s, | 174 |
| abstract_inverted_index.$ϕ(x,y)$ | 48 |
| abstract_inverted_index.bivariate | 5, 31 |
| abstract_inverted_index.combining | 114 |
| abstract_inverted_index.condition | 43 |
| abstract_inverted_index.dependent | 18 |
| abstract_inverted_index.dimension | 45 |
| abstract_inverted_index.introduce | 1 |
| abstract_inverted_index.phenomena | 13 |
| abstract_inverted_index.satisfies | 40 |
| abstract_inverted_index.settings. | 19 |
| abstract_inverted_index.variables | 7, 72 |
| abstract_inverted_index.ϕ)>0$ | 175 |
| abstract_inverted_index.$δ^{-s}$, | 160 |
| abstract_inverted_index.conditions | 3 |
| abstract_inverted_index.estimates. | 148 |
| abstract_inverted_index.framework, | 113 |
| abstract_inverted_index.introduces | 108 |
| abstract_inverted_index.invertible | 67 |
| abstract_inverted_index.multi-step | 111 |
| abstract_inverted_index.polynomial | 51, 56 |
| abstract_inverted_index.satisfying | 161 |
| abstract_inverted_index.$A\subseteq | 155 |
| abstract_inverted_index.$G\subseteq | 169 |
| abstract_inverted_index.E_δ(A+_GA) | 179 |
| abstract_inverted_index.assumptions | 98 |
| abstract_inverted_index.cardinality | 159 |
| abstract_inverted_index.conditions, | 164 |
| abstract_inverted_index.discretized | 10, 119, 145 |
| abstract_inverted_index.independent | 16 |
| abstract_inverted_index.particular, | 150 |
| abstract_inverted_index.sum-product | 12, 146 |
| abstract_inverted_index.E_δ(ϕ_G(A, | 181 |
| abstract_inverted_index.application, | 142 |
| abstract_inverted_index.distribution | 39 |
| abstract_inverted_index.sufficiently | 92 |
| abstract_inverted_index.$δ$-covering | 194 |
| abstract_inverted_index.\mathbb{R}[x, | 58 |
| abstract_inverted_index.submodularity | 116 |
| abstract_inverted_index.$δ$-separated | 153 |
| abstract_inverted_index.H_n(ϕ(X,Y))\} | 86 |
| abstract_inverted_index.ε(ϕ,s)>0$ | 81 |
| abstract_inverted_index.\max\{H_n(X+Y), | 85 |
| abstract_inverted_index.\ggδ^{-ε}(\#A) | 183 |
| abstract_inverted_index.state-of-the-art | 124 |
| abstract_inverted_index.non-concentration | 163 |
| abstract_inverted_index.$A+_GA:=\{x+y\colon | 198 |
| abstract_inverted_index.$ρ_1(x)+ρ_2(y)\in | 57 |
| abstract_inverted_index.$ϕ_G(A,A):=\{ϕ(x, | 203 |
| abstract_inverted_index.Balog-Szemerédi-Gowers | 121 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |