Full-Resolution Lung Nodule Localization From Chest X-Ray Images Using Residual Encoder-Decoder Networks Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1109/access.2023.3343451
Lung cancer is the leading cause of cancer death, and early diagnosis is associated with a positive prognosis. Chest X-ray (CXR) provides an inexpensive imaging mode for lung cancer diagnosis. Computer vision algorithms have previously been proposed to assist human radiologists in this task; however, leading studies use down-sampled images and computationally expensive methods with unproven generalization. In contrast, this study localizes lung nodules from CXR images using efficient encoder-decoder neural networks that have been crafted to process full resolution input images, thereby avoiding signal loss resulting from down-sampling. Encoder-decoder networks are trained and tested using the Japanese Society of Radiological Technology dataset. The networks are used to localize lung nodules from an independent CXR dataset. These experiments allow for the determination of the optimal network depth, image resolution, and pre-processing pipeline for generalized lung nodule localization. We find that more subtle nodules are detected in earlier training epochs. Therefore, we propose a novel self-ensemble model from three consecutive epochs centered on the validation optimum. This ensemble achieved a sensitivity of 85% in 10-fold internal testing with false positives of 8 per image. A sensitivity of 81% is achieved at a false positive rate of 6 following morphological false positive reduction. This result is comparable to more computationally complex systems, but with a sub-second inference time that is faster than other methods presented in the literature. The proposed algorithm achieved excellent generalization results against a challenging external dataset with a sensitivity of 77% at a false positive rate of 7.6.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2023.3343451
- https://ieeexplore.ieee.org/ielx7/6287639/10005208/10360834.pdf
- OA Status
- gold
- Cited By
- 3
- References
- 81
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4389776444
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4389776444Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2023.3343451Digital Object Identifier
- Title
-
Full-Resolution Lung Nodule Localization From Chest X-Ray Images Using Residual Encoder-Decoder NetworksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-01Full publication date if available
- Authors
-
Michael J. Horry, Subrata Chakraborty, Biswajeet Pradhan, Manoranjan Paul, Jing Zhu, Prabal Datta Barua, Hasan Mir, Fang Chen, Jianlong Zhou, U. Rajendra AcharyaList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2023.3343451Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/6287639/10005208/10360834.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/6287639/10005208/10360834.pdfDirect OA link when available
- Concepts
-
Computer science, Residual, Encoder, Decoding methods, Nodule (geology), Resolution (logic), Lung, Artificial intelligence, Radiology, Algorithm, Medicine, Internal medicine, Biology, Operating system, PaleontologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3Per-year citation counts (last 5 years)
- References (count)
-
81Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4389776444 |
|---|---|
| doi | https://doi.org/10.1109/access.2023.3343451 |
| ids.doi | https://doi.org/10.1109/access.2023.3343451 |
| ids.openalex | https://openalex.org/W4389776444 |
| fwci | 1.01212496 |
| type | article |
| title | Full-Resolution Lung Nodule Localization From Chest X-Ray Images Using Residual Encoder-Decoder Networks |
| biblio.issue | |
| biblio.volume | 11 |
| biblio.last_page | 143036 |
| biblio.first_page | 143016 |
| topics[0].id | https://openalex.org/T10202 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2740 |
| topics[0].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[0].display_name | Lung Cancer Diagnosis and Treatment |
| topics[1].id | https://openalex.org/T12422 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9983999729156494 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[2].id | https://openalex.org/T11775 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9976999759674072 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | COVID-19 diagnosis using AI |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6724007725715637 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C155512373 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6351512670516968 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q287450 |
| concepts[1].display_name | Residual |
| concepts[2].id | https://openalex.org/C118505674 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5487726926803589 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q42586063 |
| concepts[2].display_name | Encoder |
| concepts[3].id | https://openalex.org/C57273362 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4730776250362396 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q576722 |
| concepts[3].display_name | Decoding methods |
| concepts[4].id | https://openalex.org/C2776731575 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4683890640735626 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2916245 |
| concepts[4].display_name | Nodule (geology) |
| concepts[5].id | https://openalex.org/C138268822 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4634409248828888 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1051925 |
| concepts[5].display_name | Resolution (logic) |
| concepts[6].id | https://openalex.org/C2777714996 |
| concepts[6].level | 2 |
| concepts[6].score | 0.42682990431785583 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7886 |
| concepts[6].display_name | Lung |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3590434491634369 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C126838900 |
| concepts[8].level | 1 |
| concepts[8].score | 0.34128013253211975 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[8].display_name | Radiology |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.24241766333580017 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C71924100 |
| concepts[10].level | 0 |
| concepts[10].score | 0.22982728481292725 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[10].display_name | Medicine |
| concepts[11].id | https://openalex.org/C126322002 |
| concepts[11].level | 1 |
| concepts[11].score | 0.09554120898246765 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[11].display_name | Internal medicine |
| concepts[12].id | https://openalex.org/C86803240 |
| concepts[12].level | 0 |
| concepts[12].score | 0.06555625796318054 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[12].display_name | Biology |
| concepts[13].id | https://openalex.org/C111919701 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[13].display_name | Operating system |
| concepts[14].id | https://openalex.org/C151730666 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[14].display_name | Paleontology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6724007725715637 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/residual |
| keywords[1].score | 0.6351512670516968 |
| keywords[1].display_name | Residual |
| keywords[2].id | https://openalex.org/keywords/encoder |
| keywords[2].score | 0.5487726926803589 |
| keywords[2].display_name | Encoder |
| keywords[3].id | https://openalex.org/keywords/decoding-methods |
| keywords[3].score | 0.4730776250362396 |
| keywords[3].display_name | Decoding methods |
| keywords[4].id | https://openalex.org/keywords/nodule |
| keywords[4].score | 0.4683890640735626 |
| keywords[4].display_name | Nodule (geology) |
| keywords[5].id | https://openalex.org/keywords/resolution |
| keywords[5].score | 0.4634409248828888 |
| keywords[5].display_name | Resolution (logic) |
| keywords[6].id | https://openalex.org/keywords/lung |
| keywords[6].score | 0.42682990431785583 |
| keywords[6].display_name | Lung |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.3590434491634369 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/radiology |
| keywords[8].score | 0.34128013253211975 |
| keywords[8].display_name | Radiology |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.24241766333580017 |
| keywords[9].display_name | Algorithm |
| keywords[10].id | https://openalex.org/keywords/medicine |
| keywords[10].score | 0.22982728481292725 |
| keywords[10].display_name | Medicine |
| keywords[11].id | https://openalex.org/keywords/internal-medicine |
| keywords[11].score | 0.09554120898246765 |
| keywords[11].display_name | Internal medicine |
| keywords[12].id | https://openalex.org/keywords/biology |
| keywords[12].score | 0.06555625796318054 |
| keywords[12].display_name | Biology |
| language | en |
| locations[0].id | doi:10.1109/access.2023.3343451 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/10005208/10360834.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2023.3343451 |
| locations[1].id | pmh:oai:doaj.org/article:0acf11642907488bbb7be5d4c7219acb |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 11, Pp 143016-143036 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/0acf11642907488bbb7be5d4c7219acb |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5091879252 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6691-9739 |
| authorships[0].author.display_name | Michael J. Horry |
| authorships[0].countries | AU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I114017466 |
| authorships[0].affiliations[0].raw_affiliation_string | Centre for Advanced Modeling and Geospatial Information Systems (CAMGIS), School of Civil and Environmental Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, Australia |
| authorships[0].institutions[0].id | https://openalex.org/I114017466 |
| authorships[0].institutions[0].ror | https://ror.org/03f0f6041 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I114017466 |
| authorships[0].institutions[0].country_code | AU |
| authorships[0].institutions[0].display_name | University of Technology Sydney |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Michael J. Horry |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Centre for Advanced Modeling and Geospatial Information Systems (CAMGIS), School of Civil and Environmental Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, Australia |
| authorships[1].author.id | https://openalex.org/A5033894707 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0102-5424 |
| authorships[1].author.display_name | Subrata Chakraborty |
| authorships[1].countries | AU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I90745801 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Science and Technology, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW, Australia |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I11701301 |
| authorships[1].affiliations[1].raw_affiliation_string | Griffith Business School, Griffith University, Nathan, Brisbane, QLD, Australia |
| authorships[1].affiliations[2].institution_ids | https://openalex.org/I114017466 |
| authorships[1].affiliations[2].raw_affiliation_string | Centre for Advanced Modeling and Geospatial Information Systems (CAMGIS), School of Civil and Environmental Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, Australia |
| authorships[1].institutions[0].id | https://openalex.org/I11701301 |
| authorships[1].institutions[0].ror | https://ror.org/02sc3r913 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I11701301 |
| authorships[1].institutions[0].country_code | AU |
| authorships[1].institutions[0].display_name | Griffith University |
| authorships[1].institutions[1].id | https://openalex.org/I90745801 |
| authorships[1].institutions[1].ror | https://ror.org/04r659a56 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I90745801 |
| authorships[1].institutions[1].country_code | AU |
| authorships[1].institutions[1].display_name | University of New England |
| authorships[1].institutions[2].id | https://openalex.org/I114017466 |
| authorships[1].institutions[2].ror | https://ror.org/03f0f6041 |
| authorships[1].institutions[2].type | education |
| authorships[1].institutions[2].lineage | https://openalex.org/I114017466 |
| authorships[1].institutions[2].country_code | AU |
| authorships[1].institutions[2].display_name | University of Technology Sydney |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Subrata Chakraborty |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Centre for Advanced Modeling and Geospatial Information Systems (CAMGIS), School of Civil and Environmental Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, Australia, Griffith Business School, Griffith University, Nathan, Brisbane, QLD, Australia, School of Science and Technology, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW, Australia |
| authorships[2].author.id | https://openalex.org/A5059040421 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9863-2054 |
| authorships[2].author.display_name | Biswajeet Pradhan |
| authorships[2].countries | AU, MY |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I114017466 |
| authorships[2].affiliations[0].raw_affiliation_string | Centre for Advanced Modeling and Geospatial Information Systems (CAMGIS), School of Civil and Environmental Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, Australia |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I885383172 |
| authorships[2].affiliations[1].raw_affiliation_string | Earth Observation Centre, Institute of Climate Change, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia |
| authorships[2].institutions[0].id | https://openalex.org/I114017466 |
| authorships[2].institutions[0].ror | https://ror.org/03f0f6041 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I114017466 |
| authorships[2].institutions[0].country_code | AU |
| authorships[2].institutions[0].display_name | University of Technology Sydney |
| authorships[2].institutions[1].id | https://openalex.org/I885383172 |
| authorships[2].institutions[1].ror | https://ror.org/00bw8d226 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I885383172 |
| authorships[2].institutions[1].country_code | MY |
| authorships[2].institutions[1].display_name | National University of Malaysia |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Biswajeet Pradhan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Centre for Advanced Modeling and Geospatial Information Systems (CAMGIS), School of Civil and Environmental Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, Australia, Earth Observation Centre, Institute of Climate Change, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia |
| authorships[3].author.id | https://openalex.org/A5002818315 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6870-5056 |
| authorships[3].author.display_name | Manoranjan Paul |
| authorships[3].countries | AU |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I153230381 |
| authorships[3].affiliations[0].raw_affiliation_string | Machine Vision and Digital Health (MaViDH), School of Computing, Mathematics, and Engineering, Charles Sturt University, Bathurst, NSW, Australia |
| authorships[3].institutions[0].id | https://openalex.org/I153230381 |
| authorships[3].institutions[0].ror | https://ror.org/00wfvh315 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I153230381 |
| authorships[3].institutions[0].country_code | AU |
| authorships[3].institutions[0].display_name | Charles Sturt University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Manoranjan Paul |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Machine Vision and Digital Health (MaViDH), School of Computing, Mathematics, and Engineering, Charles Sturt University, Bathurst, NSW, Australia |
| authorships[4].author.id | https://openalex.org/A5100317529 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1777-5262 |
| authorships[4].author.display_name | Jing Zhu |
| authorships[4].countries | AU |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I2803024705 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Radiology, Westmead Hospital, Westmead, NSW, Australia |
| authorships[4].institutions[0].id | https://openalex.org/I2803024705 |
| authorships[4].institutions[0].ror | https://ror.org/04gp5yv64 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I2803024705 |
| authorships[4].institutions[0].country_code | AU |
| authorships[4].institutions[0].display_name | Westmead Hospital |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jing Zhu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Radiology, Westmead Hospital, Westmead, NSW, Australia |
| authorships[5].author.id | https://openalex.org/A5016221020 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5117-8333 |
| authorships[5].author.display_name | Prabal Datta Barua |
| authorships[5].countries | AU |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I185523456 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Business (Information Systems), Faculty of Business, Education, Law & Arts, University of Southern Queensland, Toowoomba, QLD, Australia |
| authorships[5].affiliations[1].raw_affiliation_string | Cogninet Brain Team, Cogninet Australia, Surry Hills, NSW, Australia |
| authorships[5].affiliations[2].institution_ids | https://openalex.org/I90745801 |
| authorships[5].affiliations[2].raw_affiliation_string | School of Science and Technology, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW, Australia |
| authorships[5].institutions[0].id | https://openalex.org/I90745801 |
| authorships[5].institutions[0].ror | https://ror.org/04r659a56 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I90745801 |
| authorships[5].institutions[0].country_code | AU |
| authorships[5].institutions[0].display_name | University of New England |
| authorships[5].institutions[1].id | https://openalex.org/I185523456 |
| authorships[5].institutions[1].ror | https://ror.org/04sjbnx57 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I185523456 |
| authorships[5].institutions[1].country_code | AU |
| authorships[5].institutions[1].display_name | University of Southern Queensland |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Prabal Datta Barua |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Cogninet Brain Team, Cogninet Australia, Surry Hills, NSW, Australia, School of Business (Information Systems), Faculty of Business, Education, Law & Arts, University of Southern Queensland, Toowoomba, QLD, Australia, School of Science and Technology, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW, Australia |
| authorships[6].author.id | https://openalex.org/A5027048647 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-6863-3002 |
| authorships[6].author.display_name | Hasan Mir |
| authorships[6].countries | AE |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I199440890 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Electrical Engineering, American University of Sharjah, Sharjah, United Arab Emirates |
| authorships[6].institutions[0].id | https://openalex.org/I199440890 |
| authorships[6].institutions[0].ror | https://ror.org/001g2fj96 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I199440890 |
| authorships[6].institutions[0].country_code | AE |
| authorships[6].institutions[0].display_name | American University of Sharjah |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Hasan Saeed Mir |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Electrical Engineering, American University of Sharjah, Sharjah, United Arab Emirates |
| authorships[7].author.id | https://openalex.org/A5100400043 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-4971-8729 |
| authorships[7].author.display_name | Fang Chen |
| authorships[7].countries | AU |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I114017466 |
| authorships[7].affiliations[0].raw_affiliation_string | Data Science Institute, University of Technology Sydney, Ultimo, NSW, Australia |
| authorships[7].institutions[0].id | https://openalex.org/I114017466 |
| authorships[7].institutions[0].ror | https://ror.org/03f0f6041 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I114017466 |
| authorships[7].institutions[0].country_code | AU |
| authorships[7].institutions[0].display_name | University of Technology Sydney |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Fang Chen |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Data Science Institute, University of Technology Sydney, Ultimo, NSW, Australia |
| authorships[8].author.id | https://openalex.org/A5047165067 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-6034-644X |
| authorships[8].author.display_name | Jianlong Zhou |
| authorships[8].countries | AU |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I114017466 |
| authorships[8].affiliations[0].raw_affiliation_string | Data Science Institute, University of Technology Sydney, Ultimo, NSW, Australia |
| authorships[8].institutions[0].id | https://openalex.org/I114017466 |
| authorships[8].institutions[0].ror | https://ror.org/03f0f6041 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I114017466 |
| authorships[8].institutions[0].country_code | AU |
| authorships[8].institutions[0].display_name | University of Technology Sydney |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Jianlong Zhou |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Data Science Institute, University of Technology Sydney, Ultimo, NSW, Australia |
| authorships[9].author.id | https://openalex.org/A5074179735 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-2689-8552 |
| authorships[9].author.display_name | U. Rajendra Acharya |
| authorships[9].countries | AU |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I185523456 |
| authorships[9].affiliations[0].raw_affiliation_string | School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, QLD, Australia |
| authorships[9].institutions[0].id | https://openalex.org/I185523456 |
| authorships[9].institutions[0].ror | https://ror.org/04sjbnx57 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I185523456 |
| authorships[9].institutions[0].country_code | AU |
| authorships[9].institutions[0].display_name | University of Southern Queensland |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | U. Rajendra Acharya |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, QLD, Australia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/6287639/10005208/10360834.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Full-Resolution Lung Nodule Localization From Chest X-Ray Images Using Residual Encoder-Decoder Networks |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10202 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2740 |
| primary_topic.subfield.display_name | Pulmonary and Respiratory Medicine |
| primary_topic.display_name | Lung Cancer Diagnosis and Treatment |
| related_works | https://openalex.org/W2560215812, https://openalex.org/W2949601986, https://openalex.org/W4390516098, https://openalex.org/W2788972299, https://openalex.org/W2521347458, https://openalex.org/W2161474341, https://openalex.org/W2498789492, https://openalex.org/W4302615923, https://openalex.org/W2181948922, https://openalex.org/W1964806738 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2023.3343451 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/10005208/10360834.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2023.3343451 |
| primary_location.id | doi:10.1109/access.2023.3343451 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/10005208/10360834.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2023.3343451 |
| publication_date | 2023-01-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3119005666, https://openalex.org/W2890782663, https://openalex.org/W3136612418, https://openalex.org/W2169620647, https://openalex.org/W2777420618, https://openalex.org/W2165839911, https://openalex.org/W3109626385, https://openalex.org/W4221017734, https://openalex.org/W4237787922, https://openalex.org/W2083149063, https://openalex.org/W2108598243, https://openalex.org/W4383535829, https://openalex.org/W3195977080, https://openalex.org/W4296425702, https://openalex.org/W2584232769, https://openalex.org/W2063598448, https://openalex.org/W2103771663, https://openalex.org/W2044288397, https://openalex.org/W1913700110, https://openalex.org/W2169182513, https://openalex.org/W3212760103, https://openalex.org/W2084108772, https://openalex.org/W1901129140, https://openalex.org/W2142514727, https://openalex.org/W3030186763, https://openalex.org/W6724804524, https://openalex.org/W4205512907, https://openalex.org/W2981945558, https://openalex.org/W2946330662, https://openalex.org/W3155760013, https://openalex.org/W3027972128, https://openalex.org/W2346809795, https://openalex.org/W1747804349, https://openalex.org/W6799656733, https://openalex.org/W2086542911, https://openalex.org/W2004826921, https://openalex.org/W2086573481, https://openalex.org/W1593438720, https://openalex.org/W2056346379, https://openalex.org/W2109903408, https://openalex.org/W2011166543, https://openalex.org/W2025948089, https://openalex.org/W2264554850, https://openalex.org/W3194387168, https://openalex.org/W3048378651, https://openalex.org/W2112796928, https://openalex.org/W2618530766, https://openalex.org/W2345010043, https://openalex.org/W4229457836, https://openalex.org/W2014361831, https://openalex.org/W1988790447, https://openalex.org/W2982350022, https://openalex.org/W2014413326, https://openalex.org/W2923997689, https://openalex.org/W2611650229, https://openalex.org/W3213458668, https://openalex.org/W2102634410, https://openalex.org/W2594318146, https://openalex.org/W2194775991, https://openalex.org/W3184112145, https://openalex.org/W6713134421, https://openalex.org/W3180007843, https://openalex.org/W2086259925, https://openalex.org/W2060381051, https://openalex.org/W2100643868, https://openalex.org/W1982178930, https://openalex.org/W2028716337, https://openalex.org/W3002285564, https://openalex.org/W4385201774, https://openalex.org/W2162943801, https://openalex.org/W3092743670, https://openalex.org/W6729646992, https://openalex.org/W4377966413, https://openalex.org/W3164573547, https://openalex.org/W3021654819, https://openalex.org/W2549418531, https://openalex.org/W3116109536, https://openalex.org/W3103351005, https://openalex.org/W3101156210, https://openalex.org/W2502312327, https://openalex.org/W3187107883 |
| referenced_works_count | 81 |
| abstract_inverted_index.6 | 195 |
| abstract_inverted_index.8 | 180 |
| abstract_inverted_index.A | 183 |
| abstract_inverted_index.a | 15, 152, 168, 190, 212, 234, 239, 244 |
| abstract_inverted_index.In | 57 |
| abstract_inverted_index.We | 137 |
| abstract_inverted_index.an | 22, 112 |
| abstract_inverted_index.at | 189, 243 |
| abstract_inverted_index.in | 41, 145, 172, 223 |
| abstract_inverted_index.is | 2, 12, 187, 203, 217 |
| abstract_inverted_index.of | 6, 99, 122, 170, 179, 185, 194, 241, 248 |
| abstract_inverted_index.on | 161 |
| abstract_inverted_index.to | 37, 76, 107, 205 |
| abstract_inverted_index.we | 150 |
| abstract_inverted_index.CXR | 65, 114 |
| abstract_inverted_index.The | 103, 226 |
| abstract_inverted_index.and | 9, 50, 93, 129 |
| abstract_inverted_index.are | 91, 105, 143 |
| abstract_inverted_index.but | 210 |
| abstract_inverted_index.for | 26, 119, 132 |
| abstract_inverted_index.per | 181 |
| abstract_inverted_index.the | 3, 96, 120, 123, 162, 224 |
| abstract_inverted_index.use | 47 |
| abstract_inverted_index.7.6. | 249 |
| abstract_inverted_index.Lung | 0 |
| abstract_inverted_index.This | 165, 201 |
| abstract_inverted_index.been | 35, 74 |
| abstract_inverted_index.find | 138 |
| abstract_inverted_index.from | 64, 87, 111, 156 |
| abstract_inverted_index.full | 78 |
| abstract_inverted_index.have | 33, 73 |
| abstract_inverted_index.loss | 85 |
| abstract_inverted_index.lung | 27, 62, 109, 134 |
| abstract_inverted_index.mode | 25 |
| abstract_inverted_index.more | 140, 206 |
| abstract_inverted_index.rate | 193, 247 |
| abstract_inverted_index.than | 219 |
| abstract_inverted_index.that | 72, 139, 216 |
| abstract_inverted_index.this | 42, 59 |
| abstract_inverted_index.time | 215 |
| abstract_inverted_index.used | 106 |
| abstract_inverted_index.with | 14, 54, 176, 211, 238 |
| abstract_inverted_index.(CXR) | 20 |
| abstract_inverted_index.Chest | 18 |
| abstract_inverted_index.These | 116 |
| abstract_inverted_index.X-ray | 19 |
| abstract_inverted_index.allow | 118 |
| abstract_inverted_index.cause | 5 |
| abstract_inverted_index.early | 10 |
| abstract_inverted_index.false | 177, 191, 198, 245 |
| abstract_inverted_index.human | 39 |
| abstract_inverted_index.image | 127 |
| abstract_inverted_index.input | 80 |
| abstract_inverted_index.model | 155 |
| abstract_inverted_index.novel | 153 |
| abstract_inverted_index.other | 220 |
| abstract_inverted_index.study | 60 |
| abstract_inverted_index.task; | 43 |
| abstract_inverted_index.three | 157 |
| abstract_inverted_index.using | 67, 95 |
| abstract_inverted_index.assist | 38 |
| abstract_inverted_index.cancer | 1, 7, 28 |
| abstract_inverted_index.death, | 8 |
| abstract_inverted_index.depth, | 126 |
| abstract_inverted_index.epochs | 159 |
| abstract_inverted_index.faster | 218 |
| abstract_inverted_index.image. | 182 |
| abstract_inverted_index.images | 49, 66 |
| abstract_inverted_index.neural | 70 |
| abstract_inverted_index.nodule | 135 |
| abstract_inverted_index.result | 202 |
| abstract_inverted_index.signal | 84 |
| abstract_inverted_index.subtle | 141 |
| abstract_inverted_index.tested | 94 |
| abstract_inverted_index.vision | 31 |
| abstract_inverted_index.10-fold | 173 |
| abstract_inverted_index.Society | 98 |
| abstract_inverted_index.against | 233 |
| abstract_inverted_index.complex | 208 |
| abstract_inverted_index.crafted | 75 |
| abstract_inverted_index.dataset | 237 |
| abstract_inverted_index.earlier | 146 |
| abstract_inverted_index.epochs. | 148 |
| abstract_inverted_index.images, | 81 |
| abstract_inverted_index.imaging | 24 |
| abstract_inverted_index.leading | 4, 45 |
| abstract_inverted_index.methods | 53, 221 |
| abstract_inverted_index.network | 125 |
| abstract_inverted_index.nodules | 63, 110, 142 |
| abstract_inverted_index.optimal | 124 |
| abstract_inverted_index.process | 77 |
| abstract_inverted_index.propose | 151 |
| abstract_inverted_index.results | 232 |
| abstract_inverted_index.studies | 46 |
| abstract_inverted_index.testing | 175 |
| abstract_inverted_index.thereby | 82 |
| abstract_inverted_index.trained | 92 |
| abstract_inverted_index.Computer | 30 |
| abstract_inverted_index.Japanese | 97 |
| abstract_inverted_index.achieved | 167, 188, 229 |
| abstract_inverted_index.avoiding | 83 |
| abstract_inverted_index.centered | 160 |
| abstract_inverted_index.dataset. | 102, 115 |
| abstract_inverted_index.detected | 144 |
| abstract_inverted_index.ensemble | 166 |
| abstract_inverted_index.external | 236 |
| abstract_inverted_index.however, | 44 |
| abstract_inverted_index.internal | 174 |
| abstract_inverted_index.localize | 108 |
| abstract_inverted_index.networks | 71, 90, 104 |
| abstract_inverted_index.optimum. | 164 |
| abstract_inverted_index.pipeline | 131 |
| abstract_inverted_index.positive | 16, 192, 199, 246 |
| abstract_inverted_index.proposed | 36, 227 |
| abstract_inverted_index.provides | 21 |
| abstract_inverted_index.systems, | 209 |
| abstract_inverted_index.training | 147 |
| abstract_inverted_index.unproven | 55 |
| abstract_inverted_index.algorithm | 228 |
| abstract_inverted_index.contrast, | 58 |
| abstract_inverted_index.diagnosis | 11 |
| abstract_inverted_index.efficient | 68 |
| abstract_inverted_index.excellent | 230 |
| abstract_inverted_index.expensive | 52 |
| abstract_inverted_index.following | 196 |
| abstract_inverted_index.inference | 214 |
| abstract_inverted_index.localizes | 61 |
| abstract_inverted_index.positives | 178 |
| abstract_inverted_index.presented | 222 |
| abstract_inverted_index.resulting | 86 |
| abstract_inverted_index.77% | 242 |
| abstract_inverted_index.81% | 186 |
| abstract_inverted_index.85% | 171 |
| abstract_inverted_index.Technology | 101 |
| abstract_inverted_index.Therefore, | 149 |
| abstract_inverted_index.algorithms | 32 |
| abstract_inverted_index.associated | 13 |
| abstract_inverted_index.comparable | 204 |
| abstract_inverted_index.diagnosis. | 29 |
| abstract_inverted_index.previously | 34 |
| abstract_inverted_index.prognosis. | 17 |
| abstract_inverted_index.reduction. | 200 |
| abstract_inverted_index.resolution | 79 |
| abstract_inverted_index.sub-second | 213 |
| abstract_inverted_index.validation | 163 |
| abstract_inverted_index.challenging | 235 |
| abstract_inverted_index.consecutive | 158 |
| abstract_inverted_index.experiments | 117 |
| abstract_inverted_index.generalized | 133 |
| abstract_inverted_index.independent | 113 |
| abstract_inverted_index.inexpensive | 23 |
| abstract_inverted_index.literature. | 225 |
| abstract_inverted_index.resolution, | 128 |
| abstract_inverted_index.sensitivity | 169, 184, 240 |
| abstract_inverted_index.Radiological | 100 |
| abstract_inverted_index.down-sampled | 48 |
| abstract_inverted_index.radiologists | 40 |
| abstract_inverted_index.determination | 121 |
| abstract_inverted_index.localization. | 136 |
| abstract_inverted_index.morphological | 197 |
| abstract_inverted_index.self-ensemble | 154 |
| abstract_inverted_index.down-sampling. | 88 |
| abstract_inverted_index.generalization | 231 |
| abstract_inverted_index.pre-processing | 130 |
| abstract_inverted_index.Encoder-decoder | 89 |
| abstract_inverted_index.computationally | 51, 207 |
| abstract_inverted_index.encoder-decoder | 69 |
| abstract_inverted_index.generalization. | 56 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 10 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.4099999964237213 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.79098343 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |