Full-scale Deeply Supervised Attention Network for Segmenting COVID-19 Lesions Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2210.15571
Automated delineation of COVID-19 lesions from lung CT scans aids the diagnosis and prognosis for patients. The asymmetric shapes and positioning of the infected regions make the task extremely difficult. Capturing information at multiple scales will assist in deciphering features, at global and local levels, to encompass lesions of variable size and texture. We introduce the Full-scale Deeply Supervised Attention Network (FuDSA-Net), for efficient segmentation of corona-infected lung areas in CT images. The model considers activation responses from all levels of the encoding path, encompassing multi-scalar features acquired at different levels of the network. This helps segment target regions (lesions) of varying shape, size and contrast. Incorporation of the entire gamut of multi-scalar characteristics into the novel attention mechanism helps prioritize the selection of activation responses and locations containing useful information. Determining robust and discriminatory features along the decoder path is facilitated with deep supervision. Connections in the decoder arm are remodeled to handle the issue of vanishing gradient. As observed from the experimental results, FuDSA-Net surpasses other state-of-the-art architectures; especially, when it comes to characterizing complicated geometries of the lesions.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2210.15571
- https://arxiv.org/pdf/2210.15571
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4307537414
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4307537414Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2210.15571Digital Object Identifier
- Title
-
Full-scale Deeply Supervised Attention Network for Segmenting COVID-19 LesionsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-10-27Full publication date if available
- Authors
-
Pallabi Dutta, Sushmita MitraList of authors in order
- Landing page
-
https://arxiv.org/abs/2210.15571Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2210.15571Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2210.15571Direct OA link when available
- Concepts
-
Computer science, Segmentation, Artificial intelligence, Scale (ratio), Pattern recognition (psychology), Path (computing), Scalar (mathematics), Mathematics, Cartography, Programming language, Geography, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4307537414 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2210.15571 |
| ids.doi | https://doi.org/10.48550/arxiv.2210.15571 |
| ids.openalex | https://openalex.org/W4307537414 |
| fwci | |
| type | preprint |
| title | Full-scale Deeply Supervised Attention Network for Segmenting COVID-19 Lesions |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11775 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | COVID-19 diagnosis using AI |
| topics[1].id | https://openalex.org/T12422 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9923999905586243 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[2].id | https://openalex.org/T10862 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9889000058174133 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | AI in cancer detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.635490894317627 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C89600930 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6134966611862183 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[1].display_name | Segmentation |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5360301733016968 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2778755073 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4526224136352539 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[3].display_name | Scale (ratio) |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4431857168674469 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C2777735758 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4282499849796295 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q817765 |
| concepts[5].display_name | Path (computing) |
| concepts[6].id | https://openalex.org/C57691317 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4198184609413147 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1289248 |
| concepts[6].display_name | Scalar (mathematics) |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.1209644079208374 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C58640448 |
| concepts[8].level | 1 |
| concepts[8].score | 0.10986071825027466 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[8].display_name | Cartography |
| concepts[9].id | https://openalex.org/C199360897 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[9].display_name | Programming language |
| concepts[10].id | https://openalex.org/C205649164 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[10].display_name | Geography |
| concepts[11].id | https://openalex.org/C2524010 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[11].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.635490894317627 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/segmentation |
| keywords[1].score | 0.6134966611862183 |
| keywords[1].display_name | Segmentation |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5360301733016968 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/scale |
| keywords[3].score | 0.4526224136352539 |
| keywords[3].display_name | Scale (ratio) |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.4431857168674469 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/path |
| keywords[5].score | 0.4282499849796295 |
| keywords[5].display_name | Path (computing) |
| keywords[6].id | https://openalex.org/keywords/scalar |
| keywords[6].score | 0.4198184609413147 |
| keywords[6].display_name | Scalar (mathematics) |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.1209644079208374 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/cartography |
| keywords[8].score | 0.10986071825027466 |
| keywords[8].display_name | Cartography |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2210.15571 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://arxiv.org/pdf/2210.15571 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2210.15571 |
| locations[1].id | doi:10.48550/arxiv.2210.15571 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2210.15571 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5110944527 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5231-4023 |
| authorships[0].author.display_name | Pallabi Dutta |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dutta, Pallabi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5028039397 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9285-1117 |
| authorships[1].author.display_name | Sushmita Mitra |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Mitra, Sushmita |
| authorships[1].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2210.15571 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-11-03T00:00:00 |
| display_name | Full-scale Deeply Supervised Attention Network for Segmenting COVID-19 Lesions |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11775 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | COVID-19 diagnosis using AI |
| related_works | https://openalex.org/W4379231730, https://openalex.org/W4389858081, https://openalex.org/W2501551404, https://openalex.org/W4385583601, https://openalex.org/W4298131179, https://openalex.org/W2113201962, https://openalex.org/W2799953226, https://openalex.org/W3204400600, https://openalex.org/W3159516372, https://openalex.org/W3011384228 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2210.15571 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2210.15571 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2210.15571 |
| primary_location.id | pmh:oai:arXiv.org:2210.15571 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://arxiv.org/pdf/2210.15571 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2210.15571 |
| publication_date | 2022-10-27 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.As | 159 |
| abstract_inverted_index.CT | 7, 70 |
| abstract_inverted_index.We | 53 |
| abstract_inverted_index.at | 32, 40, 88 |
| abstract_inverted_index.in | 37, 69, 146 |
| abstract_inverted_index.is | 140 |
| abstract_inverted_index.it | 172 |
| abstract_inverted_index.of | 2, 21, 48, 65, 80, 91, 100, 107, 111, 123, 156, 178 |
| abstract_inverted_index.to | 45, 152, 174 |
| abstract_inverted_index.The | 16, 72 |
| abstract_inverted_index.all | 78 |
| abstract_inverted_index.and | 12, 19, 42, 51, 104, 126, 133 |
| abstract_inverted_index.are | 150 |
| abstract_inverted_index.arm | 149 |
| abstract_inverted_index.for | 14, 62 |
| abstract_inverted_index.the | 10, 22, 26, 55, 81, 92, 108, 115, 121, 137, 147, 154, 162, 179 |
| abstract_inverted_index.This | 94 |
| abstract_inverted_index.aids | 9 |
| abstract_inverted_index.deep | 143 |
| abstract_inverted_index.from | 5, 77, 161 |
| abstract_inverted_index.into | 114 |
| abstract_inverted_index.lung | 6, 67 |
| abstract_inverted_index.make | 25 |
| abstract_inverted_index.path | 139 |
| abstract_inverted_index.size | 50, 103 |
| abstract_inverted_index.task | 27 |
| abstract_inverted_index.when | 171 |
| abstract_inverted_index.will | 35 |
| abstract_inverted_index.with | 142 |
| abstract_inverted_index.along | 136 |
| abstract_inverted_index.areas | 68 |
| abstract_inverted_index.comes | 173 |
| abstract_inverted_index.gamut | 110 |
| abstract_inverted_index.helps | 95, 119 |
| abstract_inverted_index.issue | 155 |
| abstract_inverted_index.local | 43 |
| abstract_inverted_index.model | 73 |
| abstract_inverted_index.novel | 116 |
| abstract_inverted_index.other | 167 |
| abstract_inverted_index.path, | 83 |
| abstract_inverted_index.scans | 8 |
| abstract_inverted_index.Deeply | 57 |
| abstract_inverted_index.assist | 36 |
| abstract_inverted_index.entire | 109 |
| abstract_inverted_index.global | 41 |
| abstract_inverted_index.handle | 153 |
| abstract_inverted_index.levels | 79, 90 |
| abstract_inverted_index.robust | 132 |
| abstract_inverted_index.scales | 34 |
| abstract_inverted_index.shape, | 102 |
| abstract_inverted_index.shapes | 18 |
| abstract_inverted_index.target | 97 |
| abstract_inverted_index.useful | 129 |
| abstract_inverted_index.Network | 60 |
| abstract_inverted_index.decoder | 138, 148 |
| abstract_inverted_index.images. | 71 |
| abstract_inverted_index.lesions | 4, 47 |
| abstract_inverted_index.levels, | 44 |
| abstract_inverted_index.regions | 24, 98 |
| abstract_inverted_index.segment | 96 |
| abstract_inverted_index.varying | 101 |
| abstract_inverted_index.COVID-19 | 3 |
| abstract_inverted_index.acquired | 87 |
| abstract_inverted_index.encoding | 82 |
| abstract_inverted_index.features | 86, 135 |
| abstract_inverted_index.infected | 23 |
| abstract_inverted_index.lesions. | 180 |
| abstract_inverted_index.multiple | 33 |
| abstract_inverted_index.network. | 93 |
| abstract_inverted_index.observed | 160 |
| abstract_inverted_index.results, | 164 |
| abstract_inverted_index.texture. | 52 |
| abstract_inverted_index.variable | 49 |
| abstract_inverted_index.(lesions) | 99 |
| abstract_inverted_index.Attention | 59 |
| abstract_inverted_index.Automated | 0 |
| abstract_inverted_index.Capturing | 30 |
| abstract_inverted_index.FuDSA-Net | 165 |
| abstract_inverted_index.attention | 117 |
| abstract_inverted_index.considers | 74 |
| abstract_inverted_index.contrast. | 105 |
| abstract_inverted_index.diagnosis | 11 |
| abstract_inverted_index.different | 89 |
| abstract_inverted_index.efficient | 63 |
| abstract_inverted_index.encompass | 46 |
| abstract_inverted_index.extremely | 28 |
| abstract_inverted_index.features, | 39 |
| abstract_inverted_index.gradient. | 158 |
| abstract_inverted_index.introduce | 54 |
| abstract_inverted_index.locations | 127 |
| abstract_inverted_index.mechanism | 118 |
| abstract_inverted_index.patients. | 15 |
| abstract_inverted_index.prognosis | 13 |
| abstract_inverted_index.remodeled | 151 |
| abstract_inverted_index.responses | 76, 125 |
| abstract_inverted_index.selection | 122 |
| abstract_inverted_index.surpasses | 166 |
| abstract_inverted_index.vanishing | 157 |
| abstract_inverted_index.Full-scale | 56 |
| abstract_inverted_index.Supervised | 58 |
| abstract_inverted_index.activation | 75, 124 |
| abstract_inverted_index.asymmetric | 17 |
| abstract_inverted_index.containing | 128 |
| abstract_inverted_index.difficult. | 29 |
| abstract_inverted_index.geometries | 177 |
| abstract_inverted_index.prioritize | 120 |
| abstract_inverted_index.Connections | 145 |
| abstract_inverted_index.Determining | 131 |
| abstract_inverted_index.complicated | 176 |
| abstract_inverted_index.deciphering | 38 |
| abstract_inverted_index.delineation | 1 |
| abstract_inverted_index.especially, | 170 |
| abstract_inverted_index.facilitated | 141 |
| abstract_inverted_index.information | 31 |
| abstract_inverted_index.positioning | 20 |
| abstract_inverted_index.(FuDSA-Net), | 61 |
| abstract_inverted_index.encompassing | 84 |
| abstract_inverted_index.experimental | 163 |
| abstract_inverted_index.information. | 130 |
| abstract_inverted_index.multi-scalar | 85, 112 |
| abstract_inverted_index.segmentation | 64 |
| abstract_inverted_index.supervision. | 144 |
| abstract_inverted_index.Incorporation | 106 |
| abstract_inverted_index.architectures; | 169 |
| abstract_inverted_index.characterizing | 175 |
| abstract_inverted_index.discriminatory | 134 |
| abstract_inverted_index.characteristics | 113 |
| abstract_inverted_index.corona-infected | 66 |
| abstract_inverted_index.state-of-the-art | 168 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.7099999785423279 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile |