Fully Convolutional Neural Network for Semantic Segmentation of Anatomical Structure and Pathologies in Colour Fundus Images Associated with Diabetic Retinopathy Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1902.03122
Diabetic retinopathy (DR) is the most common form of diabetic eye disease. Retinopathy can affect all diabetic patients and becomes particularly dangerous, increasing the risk of blindness, if it is left untreated. The success rate of its curability solemnly depends on diagnosis at an early stage. The development of automated computer aided disease diagnosis tools could help in faster detection of symptoms with a wider reach and reasonable cost. This paper proposes a method for the automated segmentation of retinal lesions and optic disk in fundus images using a deep fully convolutional neural network for semantic segmentation. This trainable segmentation pipeline consists of an encoder network, a corresponding decoder network followed by pixel-wise classification to segment microaneurysms, hemorrhages, hard exudates, soft exudates, optic disk from background. The network was trained using Binary cross entropy criterion with Sigmoid as the last layer, while during an additional SoftMax layer was used for boosting response of single class. The performance of the proposed method is evaluated using sensitivity, positive prediction value (PPV) and accuracy as the metrices. Further, the position of the Optic disk is localised using the segmented output map.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1902.03122
- https://arxiv.org/pdf/1902.03122
- OA Status
- green
- Cited By
- 3
- References
- 7
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2919616934
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2919616934Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1902.03122Digital Object Identifier
- Title
-
Fully Convolutional Neural Network for Semantic Segmentation of Anatomical Structure and Pathologies in Colour Fundus Images Associated with Diabetic RetinopathyWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-02-07Full publication date if available
- Authors
-
Oindrila Saha, Rachana Sathish, Debdoot SheetList of authors in order
- Landing page
-
https://arxiv.org/abs/1902.03122Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1902.03122Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1902.03122Direct OA link when available
- Concepts
-
Softmax function, Artificial intelligence, Convolutional neural network, Segmentation, Computer science, Diabetic retinopathy, Fundus (uterus), Pattern recognition (psychology), Optic disk, Retinopathy, Optic disc, Binary classification, Computer vision, Optic nerve, Ophthalmology, Medicine, Retinal, Support vector machine, Diabetes mellitus, EndocrinologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 1, 2020: 2Per-year citation counts (last 5 years)
- References (count)
-
7Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2919616934 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1902.03122 |
| ids.doi | https://doi.org/10.48550/arxiv.1902.03122 |
| ids.mag | 2919616934 |
| ids.openalex | https://openalex.org/W2919616934 |
| fwci | |
| type | preprint |
| title | Fully Convolutional Neural Network for Semantic Segmentation of Anatomical Structure and Pathologies in Colour Fundus Images Associated with Diabetic Retinopathy |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11438 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Retinal Imaging and Analysis |
| topics[1].id | https://openalex.org/T11396 |
| topics[1].field.id | https://openalex.org/fields/36 |
| topics[1].field.display_name | Health Professions |
| topics[1].score | 0.9889000058174133 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3605 |
| topics[1].subfield.display_name | Health Information Management |
| topics[1].display_name | Artificial Intelligence in Healthcare |
| topics[2].id | https://openalex.org/T12874 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9879999756813049 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Digital Imaging for Blood Diseases |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C188441871 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7564854621887207 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7554146 |
| concepts[0].display_name | Softmax function |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7510853409767151 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C81363708 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7168371081352234 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[2].display_name | Convolutional neural network |
| concepts[3].id | https://openalex.org/C89600930 |
| concepts[3].level | 2 |
| concepts[3].score | 0.706613302230835 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[3].display_name | Segmentation |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.6989865899085999 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C2779829184 |
| concepts[5].level | 3 |
| concepts[5].score | 0.6544619798660278 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q631361 |
| concepts[5].display_name | Diabetic retinopathy |
| concepts[6].id | https://openalex.org/C2776391266 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5673816800117493 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9612 |
| concepts[6].display_name | Fundus (uterus) |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5145623087882996 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C2983497740 |
| concepts[8].level | 3 |
| concepts[8].score | 0.49308034777641296 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q16873995 |
| concepts[8].display_name | Optic disk |
| concepts[9].id | https://openalex.org/C2778313320 |
| concepts[9].level | 3 |
| concepts[9].score | 0.46012115478515625 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q550455 |
| concepts[9].display_name | Retinopathy |
| concepts[10].id | https://openalex.org/C2779735895 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4315292239189148 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q16873995 |
| concepts[10].display_name | Optic disc |
| concepts[11].id | https://openalex.org/C66905080 |
| concepts[11].level | 3 |
| concepts[11].score | 0.4166054129600525 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q17005494 |
| concepts[11].display_name | Binary classification |
| concepts[12].id | https://openalex.org/C31972630 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3950628638267517 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[12].display_name | Computer vision |
| concepts[13].id | https://openalex.org/C2780837183 |
| concepts[13].level | 2 |
| concepts[13].score | 0.34564539790153503 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q186029 |
| concepts[13].display_name | Optic nerve |
| concepts[14].id | https://openalex.org/C118487528 |
| concepts[14].level | 1 |
| concepts[14].score | 0.30688801407814026 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q161437 |
| concepts[14].display_name | Ophthalmology |
| concepts[15].id | https://openalex.org/C71924100 |
| concepts[15].level | 0 |
| concepts[15].score | 0.2954684793949127 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[15].display_name | Medicine |
| concepts[16].id | https://openalex.org/C2780827179 |
| concepts[16].level | 2 |
| concepts[16].score | 0.29399383068084717 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q422001 |
| concepts[16].display_name | Retinal |
| concepts[17].id | https://openalex.org/C12267149 |
| concepts[17].level | 2 |
| concepts[17].score | 0.13238248229026794 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[17].display_name | Support vector machine |
| concepts[18].id | https://openalex.org/C555293320 |
| concepts[18].level | 2 |
| concepts[18].score | 0.09406527876853943 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q12206 |
| concepts[18].display_name | Diabetes mellitus |
| concepts[19].id | https://openalex.org/C134018914 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q162606 |
| concepts[19].display_name | Endocrinology |
| keywords[0].id | https://openalex.org/keywords/softmax-function |
| keywords[0].score | 0.7564854621887207 |
| keywords[0].display_name | Softmax function |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.7510853409767151 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[2].score | 0.7168371081352234 |
| keywords[2].display_name | Convolutional neural network |
| keywords[3].id | https://openalex.org/keywords/segmentation |
| keywords[3].score | 0.706613302230835 |
| keywords[3].display_name | Segmentation |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.6989865899085999 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/diabetic-retinopathy |
| keywords[5].score | 0.6544619798660278 |
| keywords[5].display_name | Diabetic retinopathy |
| keywords[6].id | https://openalex.org/keywords/fundus |
| keywords[6].score | 0.5673816800117493 |
| keywords[6].display_name | Fundus (uterus) |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.5145623087882996 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/optic-disk |
| keywords[8].score | 0.49308034777641296 |
| keywords[8].display_name | Optic disk |
| keywords[9].id | https://openalex.org/keywords/retinopathy |
| keywords[9].score | 0.46012115478515625 |
| keywords[9].display_name | Retinopathy |
| keywords[10].id | https://openalex.org/keywords/optic-disc |
| keywords[10].score | 0.4315292239189148 |
| keywords[10].display_name | Optic disc |
| keywords[11].id | https://openalex.org/keywords/binary-classification |
| keywords[11].score | 0.4166054129600525 |
| keywords[11].display_name | Binary classification |
| keywords[12].id | https://openalex.org/keywords/computer-vision |
| keywords[12].score | 0.3950628638267517 |
| keywords[12].display_name | Computer vision |
| keywords[13].id | https://openalex.org/keywords/optic-nerve |
| keywords[13].score | 0.34564539790153503 |
| keywords[13].display_name | Optic nerve |
| keywords[14].id | https://openalex.org/keywords/ophthalmology |
| keywords[14].score | 0.30688801407814026 |
| keywords[14].display_name | Ophthalmology |
| keywords[15].id | https://openalex.org/keywords/medicine |
| keywords[15].score | 0.2954684793949127 |
| keywords[15].display_name | Medicine |
| keywords[16].id | https://openalex.org/keywords/retinal |
| keywords[16].score | 0.29399383068084717 |
| keywords[16].display_name | Retinal |
| keywords[17].id | https://openalex.org/keywords/support-vector-machine |
| keywords[17].score | 0.13238248229026794 |
| keywords[17].display_name | Support vector machine |
| keywords[18].id | https://openalex.org/keywords/diabetes-mellitus |
| keywords[18].score | 0.09406527876853943 |
| keywords[18].display_name | Diabetes mellitus |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1902.03122 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1902.03122 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1902.03122 |
| locations[1].id | mag:2919616934 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | arXiv (Cornell University) |
| locations[1].landing_page_url | https://arxiv.org/pdf/1902.03122 |
| locations[2].id | doi:10.48550/arxiv.1902.03122 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.1902.03122 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5036639026 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Oindrila Saha |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Oindrila Saha |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5102806062 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3402-3852 |
| authorships[1].author.display_name | Rachana Sathish |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Rachana Sathish |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5010986022 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9046-149X |
| authorships[2].author.display_name | Debdoot Sheet |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Debdoot Sheet |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1902.03122 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Fully Convolutional Neural Network for Semantic Segmentation of Anatomical Structure and Pathologies in Colour Fundus Images Associated with Diabetic Retinopathy |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11438 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Retinal Imaging and Analysis |
| related_works | https://openalex.org/W3033223238, https://openalex.org/W3169142099, https://openalex.org/W2749049648, https://openalex.org/W3130046950, https://openalex.org/W3012037038, https://openalex.org/W2020339941, https://openalex.org/W2750068745, https://openalex.org/W2889758632, https://openalex.org/W3210068445, https://openalex.org/W3170346047, https://openalex.org/W2974361506, https://openalex.org/W2903412355, https://openalex.org/W2899966493, https://openalex.org/W3033274352, https://openalex.org/W2939649031, https://openalex.org/W1981577676, https://openalex.org/W2994814705, https://openalex.org/W2548221459, https://openalex.org/W2141470244, https://openalex.org/W3026543661 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2020 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:1902.03122 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1902.03122 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1902.03122 |
| primary_location.id | pmh:oai:arXiv.org:1902.03122 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1902.03122 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1902.03122 |
| publication_date | 2019-02-07 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2557738935, https://openalex.org/W1923697677, https://openalex.org/W1686810756, https://openalex.org/W2949117887, https://openalex.org/W2963881378, https://openalex.org/W1522301498, https://openalex.org/W2159764117 |
| referenced_works_count | 7 |
| abstract_inverted_index.a | 63, 72, 88, 106 |
| abstract_inverted_index.an | 43, 103, 143 |
| abstract_inverted_index.as | 137, 171 |
| abstract_inverted_index.at | 42 |
| abstract_inverted_index.by | 111 |
| abstract_inverted_index.if | 27 |
| abstract_inverted_index.in | 57, 84 |
| abstract_inverted_index.is | 3, 29, 161, 181 |
| abstract_inverted_index.it | 28 |
| abstract_inverted_index.of | 8, 25, 35, 48, 60, 78, 102, 152, 157, 177 |
| abstract_inverted_index.on | 40 |
| abstract_inverted_index.to | 114 |
| abstract_inverted_index.The | 32, 46, 126, 155 |
| abstract_inverted_index.all | 15 |
| abstract_inverted_index.and | 18, 66, 81, 169 |
| abstract_inverted_index.can | 13 |
| abstract_inverted_index.eye | 10 |
| abstract_inverted_index.for | 74, 94, 149 |
| abstract_inverted_index.its | 36 |
| abstract_inverted_index.the | 4, 23, 75, 138, 158, 172, 175, 178, 184 |
| abstract_inverted_index.was | 128, 147 |
| abstract_inverted_index.(DR) | 2 |
| abstract_inverted_index.This | 69, 97 |
| abstract_inverted_index.deep | 89 |
| abstract_inverted_index.disk | 83, 123, 180 |
| abstract_inverted_index.form | 7 |
| abstract_inverted_index.from | 124 |
| abstract_inverted_index.hard | 118 |
| abstract_inverted_index.help | 56 |
| abstract_inverted_index.last | 139 |
| abstract_inverted_index.left | 30 |
| abstract_inverted_index.map. | 187 |
| abstract_inverted_index.most | 5 |
| abstract_inverted_index.rate | 34 |
| abstract_inverted_index.risk | 24 |
| abstract_inverted_index.soft | 120 |
| abstract_inverted_index.used | 148 |
| abstract_inverted_index.with | 62, 135 |
| abstract_inverted_index.(PPV) | 168 |
| abstract_inverted_index.Optic | 179 |
| abstract_inverted_index.aided | 51 |
| abstract_inverted_index.cost. | 68 |
| abstract_inverted_index.could | 55 |
| abstract_inverted_index.cross | 132 |
| abstract_inverted_index.early | 44 |
| abstract_inverted_index.fully | 90 |
| abstract_inverted_index.layer | 146 |
| abstract_inverted_index.optic | 82, 122 |
| abstract_inverted_index.paper | 70 |
| abstract_inverted_index.reach | 65 |
| abstract_inverted_index.tools | 54 |
| abstract_inverted_index.using | 87, 130, 163, 183 |
| abstract_inverted_index.value | 167 |
| abstract_inverted_index.while | 141 |
| abstract_inverted_index.wider | 64 |
| abstract_inverted_index.Binary | 131 |
| abstract_inverted_index.affect | 14 |
| abstract_inverted_index.class. | 154 |
| abstract_inverted_index.common | 6 |
| abstract_inverted_index.during | 142 |
| abstract_inverted_index.faster | 58 |
| abstract_inverted_index.fundus | 85 |
| abstract_inverted_index.images | 86 |
| abstract_inverted_index.layer, | 140 |
| abstract_inverted_index.method | 73, 160 |
| abstract_inverted_index.neural | 92 |
| abstract_inverted_index.output | 186 |
| abstract_inverted_index.single | 153 |
| abstract_inverted_index.stage. | 45 |
| abstract_inverted_index.Sigmoid | 136 |
| abstract_inverted_index.SoftMax | 145 |
| abstract_inverted_index.becomes | 19 |
| abstract_inverted_index.decoder | 108 |
| abstract_inverted_index.depends | 39 |
| abstract_inverted_index.disease | 52 |
| abstract_inverted_index.encoder | 104 |
| abstract_inverted_index.entropy | 133 |
| abstract_inverted_index.lesions | 80 |
| abstract_inverted_index.network | 93, 109, 127 |
| abstract_inverted_index.retinal | 79 |
| abstract_inverted_index.segment | 115 |
| abstract_inverted_index.success | 33 |
| abstract_inverted_index.trained | 129 |
| abstract_inverted_index.Diabetic | 0 |
| abstract_inverted_index.Further, | 174 |
| abstract_inverted_index.accuracy | 170 |
| abstract_inverted_index.boosting | 150 |
| abstract_inverted_index.computer | 50 |
| abstract_inverted_index.consists | 101 |
| abstract_inverted_index.diabetic | 9, 16 |
| abstract_inverted_index.disease. | 11 |
| abstract_inverted_index.followed | 110 |
| abstract_inverted_index.network, | 105 |
| abstract_inverted_index.patients | 17 |
| abstract_inverted_index.pipeline | 100 |
| abstract_inverted_index.position | 176 |
| abstract_inverted_index.positive | 165 |
| abstract_inverted_index.proposed | 159 |
| abstract_inverted_index.proposes | 71 |
| abstract_inverted_index.response | 151 |
| abstract_inverted_index.semantic | 95 |
| abstract_inverted_index.solemnly | 38 |
| abstract_inverted_index.symptoms | 61 |
| abstract_inverted_index.automated | 49, 76 |
| abstract_inverted_index.criterion | 134 |
| abstract_inverted_index.detection | 59 |
| abstract_inverted_index.diagnosis | 41, 53 |
| abstract_inverted_index.evaluated | 162 |
| abstract_inverted_index.exudates, | 119, 121 |
| abstract_inverted_index.localised | 182 |
| abstract_inverted_index.metrices. | 173 |
| abstract_inverted_index.segmented | 185 |
| abstract_inverted_index.trainable | 98 |
| abstract_inverted_index.additional | 144 |
| abstract_inverted_index.blindness, | 26 |
| abstract_inverted_index.curability | 37 |
| abstract_inverted_index.dangerous, | 21 |
| abstract_inverted_index.increasing | 22 |
| abstract_inverted_index.pixel-wise | 112 |
| abstract_inverted_index.prediction | 166 |
| abstract_inverted_index.reasonable | 67 |
| abstract_inverted_index.untreated. | 31 |
| abstract_inverted_index.Retinopathy | 12 |
| abstract_inverted_index.background. | 125 |
| abstract_inverted_index.development | 47 |
| abstract_inverted_index.performance | 156 |
| abstract_inverted_index.retinopathy | 1 |
| abstract_inverted_index.hemorrhages, | 117 |
| abstract_inverted_index.particularly | 20 |
| abstract_inverted_index.segmentation | 77, 99 |
| abstract_inverted_index.sensitivity, | 164 |
| abstract_inverted_index.convolutional | 91 |
| abstract_inverted_index.corresponding | 107 |
| abstract_inverted_index.segmentation. | 96 |
| abstract_inverted_index.classification | 113 |
| abstract_inverted_index.microaneurysms, | 116 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.4300000071525574 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile |