Fully Differentiable Correlation-driven 2D/3D Registration for X-ray to CT Image Fusion Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2402.02498
Image-based rigid 2D/3D registration is a critical technique for fluoroscopic guided surgical interventions. In recent years, some learning-based fully differentiable methods have produced beneficial outcomes while the process of feature extraction and gradient flow transmission still lack controllability and interpretability. To alleviate these problems, in this work, we propose a novel fully differentiable correlation-driven network using a dual-branch CNN-transformer encoder which enables the network to extract and separate low-frequency global features from high-frequency local features. A correlation-driven loss is further proposed for low-frequency feature and high-frequency feature decomposition based on embedded information. Besides, a training strategy that learns to approximate a convex-shape similarity function is applied in our work. We test our approach on a in-house datasetand show that it outperforms both existing fully differentiable learning-based registration approaches and the conventional optimization-based baseline.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2402.02498
- https://arxiv.org/pdf/2402.02498
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391591117
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391591117Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2402.02498Digital Object Identifier
- Title
-
Fully Differentiable Correlation-driven 2D/3D Registration for X-ray to CT Image FusionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-02-04Full publication date if available
- Authors
-
Minheng Chen, Zhirun Zhang, Shuheng Gu, Zhangyang Ge, Youyong KongList of authors in order
- Landing page
-
https://arxiv.org/abs/2402.02498Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2402.02498Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2402.02498Direct OA link when available
- Concepts
-
Differentiable function, Image registration, Artificial intelligence, Computer vision, Image (mathematics), Fusion, Correlation, Image fusion, Computer science, Mathematics, Mathematical analysis, Geometry, Philosophy, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391591117 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2402.02498 |
| ids.doi | https://doi.org/10.48550/arxiv.2402.02498 |
| ids.openalex | https://openalex.org/W4391591117 |
| fwci | |
| type | preprint |
| title | Fully Differentiable Correlation-driven 2D/3D Registration for X-ray to CT Image Fusion |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10052 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9847000241279602 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Medical Image Segmentation Techniques |
| topics[1].id | https://openalex.org/T12386 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.941100001335144 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Advanced X-ray and CT Imaging |
| topics[2].id | https://openalex.org/T10522 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9168000221252441 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Medical Imaging Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C202615002 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6796207427978516 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q783507 |
| concepts[0].display_name | Differentiable function |
| concepts[1].id | https://openalex.org/C166704113 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6702709197998047 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q861092 |
| concepts[1].display_name | Image registration |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5732277035713196 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C31972630 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5517879128456116 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[3].display_name | Computer vision |
| concepts[4].id | https://openalex.org/C115961682 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4725715219974518 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[4].display_name | Image (mathematics) |
| concepts[5].id | https://openalex.org/C158525013 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4533967971801758 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2593739 |
| concepts[5].display_name | Fusion |
| concepts[6].id | https://openalex.org/C117220453 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4527556598186493 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5172842 |
| concepts[6].display_name | Correlation |
| concepts[7].id | https://openalex.org/C69744172 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4494546949863434 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q860822 |
| concepts[7].display_name | Image fusion |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.43062031269073486 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.29961729049682617 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C134306372 |
| concepts[10].level | 1 |
| concepts[10].score | 0.1779116988182068 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[10].display_name | Mathematical analysis |
| concepts[11].id | https://openalex.org/C2524010 |
| concepts[11].level | 1 |
| concepts[11].score | 0.17311283946037292 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[11].display_name | Geometry |
| concepts[12].id | https://openalex.org/C138885662 |
| concepts[12].level | 0 |
| concepts[12].score | 0.06685635447502136 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[12].display_name | Philosophy |
| concepts[13].id | https://openalex.org/C41895202 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[13].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/differentiable-function |
| keywords[0].score | 0.6796207427978516 |
| keywords[0].display_name | Differentiable function |
| keywords[1].id | https://openalex.org/keywords/image-registration |
| keywords[1].score | 0.6702709197998047 |
| keywords[1].display_name | Image registration |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5732277035713196 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-vision |
| keywords[3].score | 0.5517879128456116 |
| keywords[3].display_name | Computer vision |
| keywords[4].id | https://openalex.org/keywords/image |
| keywords[4].score | 0.4725715219974518 |
| keywords[4].display_name | Image (mathematics) |
| keywords[5].id | https://openalex.org/keywords/fusion |
| keywords[5].score | 0.4533967971801758 |
| keywords[5].display_name | Fusion |
| keywords[6].id | https://openalex.org/keywords/correlation |
| keywords[6].score | 0.4527556598186493 |
| keywords[6].display_name | Correlation |
| keywords[7].id | https://openalex.org/keywords/image-fusion |
| keywords[7].score | 0.4494546949863434 |
| keywords[7].display_name | Image fusion |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.43062031269073486 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.29961729049682617 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[10].score | 0.1779116988182068 |
| keywords[10].display_name | Mathematical analysis |
| keywords[11].id | https://openalex.org/keywords/geometry |
| keywords[11].score | 0.17311283946037292 |
| keywords[11].display_name | Geometry |
| keywords[12].id | https://openalex.org/keywords/philosophy |
| keywords[12].score | 0.06685635447502136 |
| keywords[12].display_name | Philosophy |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2402.02498 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2402.02498 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2402.02498 |
| locations[1].id | doi:10.48550/arxiv.2402.02498 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2402.02498 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5113098403 |
| authorships[0].author.orcid | https://orcid.org/0009-0009-3926-9289 |
| authorships[0].author.display_name | Minheng Chen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chen, Minheng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5103075724 |
| authorships[1].author.orcid | https://orcid.org/0009-0009-9613-1542 |
| authorships[1].author.display_name | Zhirun Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhang, Zhirun |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5111148983 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Shuheng Gu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Gu, Shuheng |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101301822 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Zhangyang Ge |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ge, Zhangyang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5008751186 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2095-8470 |
| authorships[4].author.display_name | Youyong Kong |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Kong, Youyong |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2402.02498 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Fully Differentiable Correlation-driven 2D/3D Registration for X-ray to CT Image Fusion |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10052 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9847000241279602 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Medical Image Segmentation Techniques |
| related_works | https://openalex.org/W2788731446, https://openalex.org/W2204403038, https://openalex.org/W3152170969, https://openalex.org/W2139242969, https://openalex.org/W2379054866, https://openalex.org/W2549658594, https://openalex.org/W2370195708, https://openalex.org/W1490651872, https://openalex.org/W2350422455, https://openalex.org/W2284201331 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2402.02498 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2402.02498 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2402.02498 |
| primary_location.id | pmh:oai:arXiv.org:2402.02498 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2402.02498 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2402.02498 |
| publication_date | 2024-02-04 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 75 |
| abstract_inverted_index.a | 5, 49, 56, 93, 100, 114 |
| abstract_inverted_index.In | 13 |
| abstract_inverted_index.To | 40 |
| abstract_inverted_index.We | 109 |
| abstract_inverted_index.in | 44, 106 |
| abstract_inverted_index.is | 4, 78, 104 |
| abstract_inverted_index.it | 119 |
| abstract_inverted_index.of | 28 |
| abstract_inverted_index.on | 89, 113 |
| abstract_inverted_index.to | 64, 98 |
| abstract_inverted_index.we | 47 |
| abstract_inverted_index.and | 31, 38, 66, 84, 128 |
| abstract_inverted_index.for | 8, 81 |
| abstract_inverted_index.our | 107, 111 |
| abstract_inverted_index.the | 26, 62, 129 |
| abstract_inverted_index.both | 121 |
| abstract_inverted_index.flow | 33 |
| abstract_inverted_index.from | 71 |
| abstract_inverted_index.have | 21 |
| abstract_inverted_index.lack | 36 |
| abstract_inverted_index.loss | 77 |
| abstract_inverted_index.show | 117 |
| abstract_inverted_index.some | 16 |
| abstract_inverted_index.test | 110 |
| abstract_inverted_index.that | 96, 118 |
| abstract_inverted_index.this | 45 |
| abstract_inverted_index.2D/3D | 2 |
| abstract_inverted_index.based | 88 |
| abstract_inverted_index.fully | 18, 51, 123 |
| abstract_inverted_index.local | 73 |
| abstract_inverted_index.novel | 50 |
| abstract_inverted_index.rigid | 1 |
| abstract_inverted_index.still | 35 |
| abstract_inverted_index.these | 42 |
| abstract_inverted_index.using | 55 |
| abstract_inverted_index.which | 60 |
| abstract_inverted_index.while | 25 |
| abstract_inverted_index.work, | 46 |
| abstract_inverted_index.work. | 108 |
| abstract_inverted_index.global | 69 |
| abstract_inverted_index.guided | 10 |
| abstract_inverted_index.learns | 97 |
| abstract_inverted_index.recent | 14 |
| abstract_inverted_index.years, | 15 |
| abstract_inverted_index.applied | 105 |
| abstract_inverted_index.enables | 61 |
| abstract_inverted_index.encoder | 59 |
| abstract_inverted_index.extract | 65 |
| abstract_inverted_index.feature | 29, 83, 86 |
| abstract_inverted_index.further | 79 |
| abstract_inverted_index.methods | 20 |
| abstract_inverted_index.network | 54, 63 |
| abstract_inverted_index.process | 27 |
| abstract_inverted_index.propose | 48 |
| abstract_inverted_index.Besides, | 92 |
| abstract_inverted_index.approach | 112 |
| abstract_inverted_index.critical | 6 |
| abstract_inverted_index.embedded | 90 |
| abstract_inverted_index.existing | 122 |
| abstract_inverted_index.features | 70 |
| abstract_inverted_index.function | 103 |
| abstract_inverted_index.gradient | 32 |
| abstract_inverted_index.in-house | 115 |
| abstract_inverted_index.outcomes | 24 |
| abstract_inverted_index.produced | 22 |
| abstract_inverted_index.proposed | 80 |
| abstract_inverted_index.separate | 67 |
| abstract_inverted_index.strategy | 95 |
| abstract_inverted_index.surgical | 11 |
| abstract_inverted_index.training | 94 |
| abstract_inverted_index.alleviate | 41 |
| abstract_inverted_index.baseline. | 132 |
| abstract_inverted_index.features. | 74 |
| abstract_inverted_index.problems, | 43 |
| abstract_inverted_index.technique | 7 |
| abstract_inverted_index.approaches | 127 |
| abstract_inverted_index.beneficial | 23 |
| abstract_inverted_index.datasetand | 116 |
| abstract_inverted_index.extraction | 30 |
| abstract_inverted_index.similarity | 102 |
| abstract_inverted_index.Image-based | 0 |
| abstract_inverted_index.approximate | 99 |
| abstract_inverted_index.dual-branch | 57 |
| abstract_inverted_index.outperforms | 120 |
| abstract_inverted_index.conventional | 130 |
| abstract_inverted_index.convex-shape | 101 |
| abstract_inverted_index.fluoroscopic | 9 |
| abstract_inverted_index.information. | 91 |
| abstract_inverted_index.registration | 3, 126 |
| abstract_inverted_index.transmission | 34 |
| abstract_inverted_index.decomposition | 87 |
| abstract_inverted_index.low-frequency | 68, 82 |
| abstract_inverted_index.differentiable | 19, 52, 124 |
| abstract_inverted_index.high-frequency | 72, 85 |
| abstract_inverted_index.interventions. | 12 |
| abstract_inverted_index.learning-based | 17, 125 |
| abstract_inverted_index.CNN-transformer | 58 |
| abstract_inverted_index.controllability | 37 |
| abstract_inverted_index.interpretability. | 39 |
| abstract_inverted_index.correlation-driven | 53, 76 |
| abstract_inverted_index.optimization-based | 131 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |