Fully Synthetic Videos and the Random-Background-Pasting Method for Flame Segmentation Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/electronics12112492
Video-based flame detection (VFD) aims to recognize fire events by using image features. Flame segmentation is an essential task in VFD, providing suspected regions for feature analysis and object recognition. However, the lack of positive flame samples makes it difficult to train deep-learning-based VFD models effectively. In this paper, we propose the assumption that we can train a segmentation model with virtual flame images and design experiments to prove it. We collected many virtual flame videos to extend existing flame datasets, which provide adequate flame samples for deep-learning-based VFD methods. We also apply a random-background-pasting method to distribute the flame images among different scenarios. The proposed method trains a flame segmentation model with zero real flame images. Moreover, we perform segmentation testing using real flame images, which the model has never used, to see if the model trained using ‘fake’ images can segment real objects. We trained four segmentation models based on FCN, U-Net, Deeplabv3, and Mask-RCNN using synthetic flame video frames and obtained the highest mPA of 0.783 and mIoU of 0.515. The experimental results on the FIRE-SMOKE-DATASET and the Fire-Detection-Image-Dataset demonstrate that the ‘fake’ flame samples generated by the proposed random-background-pasting method can obviously improve the performance of existing state-of-the-art flame segmentation methods using cross-dataset evaluation settings.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/electronics12112492
- https://www.mdpi.com/2079-9292/12/11/2492/pdf?version=1686041613
- OA Status
- gold
- References
- 25
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4379055032
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4379055032Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/electronics12112492Digital Object Identifier
- Title
-
Fully Synthetic Videos and the Random-Background-Pasting Method for Flame SegmentationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-05-31Full publication date if available
- Authors
-
Yang Jia, Zhenbin Mao, Xinmeng Zhang, Yaxi Kuang, Yanping Chen, Qixing ZhangList of authors in order
- Landing page
-
https://doi.org/10.3390/electronics12112492Publisher landing page
- PDF URL
-
https://www.mdpi.com/2079-9292/12/11/2492/pdf?version=1686041613Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2079-9292/12/11/2492/pdf?version=1686041613Direct OA link when available
- Concepts
-
Segmentation, Artificial intelligence, Computer science, Feature (linguistics), Image segmentation, Pattern recognition (psychology), Computer vision, Philosophy, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
25Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4379055032 |
|---|---|
| doi | https://doi.org/10.3390/electronics12112492 |
| ids.doi | https://doi.org/10.3390/electronics12112492 |
| ids.openalex | https://openalex.org/W4379055032 |
| fwci | 0.0 |
| type | article |
| title | Fully Synthetic Videos and the Random-Background-Pasting Method for Flame Segmentation |
| biblio.issue | 11 |
| biblio.volume | 12 |
| biblio.last_page | 2492 |
| biblio.first_page | 2492 |
| topics[0].id | https://openalex.org/T12597 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2213 |
| topics[0].subfield.display_name | Safety, Risk, Reliability and Quality |
| topics[0].display_name | Fire Detection and Safety Systems |
| topics[1].id | https://openalex.org/T10331 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9941999912261963 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Video Surveillance and Tracking Methods |
| topics[2].id | https://openalex.org/T11317 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9904999732971191 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2213 |
| topics[2].subfield.display_name | Safety, Risk, Reliability and Quality |
| topics[2].display_name | Fire dynamics and safety research |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C89600930 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7526359558105469 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[0].display_name | Segmentation |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.700512170791626 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.660519540309906 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2776401178 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5800321698188782 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[3].display_name | Feature (linguistics) |
| concepts[4].id | https://openalex.org/C124504099 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5671716928482056 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[4].display_name | Image segmentation |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5090453028678894 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C31972630 |
| concepts[6].level | 1 |
| concepts[6].score | 0.49451419711112976 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[6].display_name | Computer vision |
| concepts[7].id | https://openalex.org/C138885662 |
| concepts[7].level | 0 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[7].display_name | Philosophy |
| concepts[8].id | https://openalex.org/C41895202 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[8].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/segmentation |
| keywords[0].score | 0.7526359558105469 |
| keywords[0].display_name | Segmentation |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.700512170791626 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.660519540309906 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/feature |
| keywords[3].score | 0.5800321698188782 |
| keywords[3].display_name | Feature (linguistics) |
| keywords[4].id | https://openalex.org/keywords/image-segmentation |
| keywords[4].score | 0.5671716928482056 |
| keywords[4].display_name | Image segmentation |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.5090453028678894 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/computer-vision |
| keywords[6].score | 0.49451419711112976 |
| keywords[6].display_name | Computer vision |
| language | en |
| locations[0].id | doi:10.3390/electronics12112492 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210202905 |
| locations[0].source.issn | 2079-9292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2079-9292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Electronics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2079-9292/12/11/2492/pdf?version=1686041613 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Electronics |
| locations[0].landing_page_url | https://doi.org/10.3390/electronics12112492 |
| locations[1].id | pmh:oai:mdpi.com:/2079-9292/12/11/2492/ |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400947 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | MDPI (MDPI AG) |
| locations[1].source.host_organization | https://openalex.org/I4210097602 |
| locations[1].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[1].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Electronics; Volume 12; Issue 11; Pages: 2492 |
| locations[1].landing_page_url | https://dx.doi.org/10.3390/electronics12112492 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101672408 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8964-6702 |
| authorships[0].author.display_name | Yang Jia |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I126520041 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210136859 |
| authorships[0].affiliations[1].raw_affiliation_string | Shaanxi Key Laboratory of Network Data Intelligent Processing, Xi’an University of Posts and Telecommunications, Xi’an 710121, China |
| authorships[0].affiliations[2].institution_ids | https://openalex.org/I4210136859 |
| authorships[0].affiliations[2].raw_affiliation_string | Xi’an Key Laboratory of Big Data and Intelligent Computing, Xi’an University of Posts and Telecommunications, Xi’an 710121, China |
| authorships[0].institutions[0].id | https://openalex.org/I126520041 |
| authorships[0].institutions[0].ror | https://ror.org/04c4dkn09 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I126520041, https://openalex.org/I19820366 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | University of Science and Technology of China |
| authorships[0].institutions[1].id | https://openalex.org/I4210136859 |
| authorships[0].institutions[1].ror | https://ror.org/04jn0td46 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210136859 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Xi’an University of Posts and Telecommunications |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yang Jia |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China, Shaanxi Key Laboratory of Network Data Intelligent Processing, Xi’an University of Posts and Telecommunications, Xi’an 710121, China, Xi’an Key Laboratory of Big Data and Intelligent Computing, Xi’an University of Posts and Telecommunications, Xi’an 710121, China |
| authorships[1].author.id | https://openalex.org/A5101982407 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7588-4742 |
| authorships[1].author.display_name | Zhenbin Mao |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210136859 |
| authorships[1].affiliations[0].raw_affiliation_string | Shaanxi Key Laboratory of Network Data Intelligent Processing, Xi’an University of Posts and Telecommunications, Xi’an 710121, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I4210136859 |
| authorships[1].affiliations[1].raw_affiliation_string | School of Computer Science, Xi’an University of Posts and Telecommunications, Xi’an 710121, China |
| authorships[1].affiliations[2].institution_ids | https://openalex.org/I4210136859 |
| authorships[1].affiliations[2].raw_affiliation_string | Xi’an Key Laboratory of Big Data and Intelligent Computing, Xi’an University of Posts and Telecommunications, Xi’an 710121, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210136859 |
| authorships[1].institutions[0].ror | https://ror.org/04jn0td46 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210136859 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Xi’an University of Posts and Telecommunications |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zixu Mao |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computer Science, Xi’an University of Posts and Telecommunications, Xi’an 710121, China, Shaanxi Key Laboratory of Network Data Intelligent Processing, Xi’an University of Posts and Telecommunications, Xi’an 710121, China, Xi’an Key Laboratory of Big Data and Intelligent Computing, Xi’an University of Posts and Telecommunications, Xi’an 710121, China |
| authorships[2].author.id | https://openalex.org/A5074003488 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3983-2635 |
| authorships[2].author.display_name | Xinmeng Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210136859 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Computer Science, Xi’an University of Posts and Telecommunications, Xi’an 710121, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I4210136859 |
| authorships[2].affiliations[1].raw_affiliation_string | Shaanxi Key Laboratory of Network Data Intelligent Processing, Xi’an University of Posts and Telecommunications, Xi’an 710121, China |
| authorships[2].affiliations[2].institution_ids | https://openalex.org/I4210136859 |
| authorships[2].affiliations[2].raw_affiliation_string | Xi’an Key Laboratory of Big Data and Intelligent Computing, Xi’an University of Posts and Telecommunications, Xi’an 710121, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210136859 |
| authorships[2].institutions[0].ror | https://ror.org/04jn0td46 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210136859 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Xi’an University of Posts and Telecommunications |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xinmeng Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Computer Science, Xi’an University of Posts and Telecommunications, Xi’an 710121, China, Shaanxi Key Laboratory of Network Data Intelligent Processing, Xi’an University of Posts and Telecommunications, Xi’an 710121, China, Xi’an Key Laboratory of Big Data and Intelligent Computing, Xi’an University of Posts and Telecommunications, Xi’an 710121, China |
| authorships[3].author.id | https://openalex.org/A5039032407 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3818-6299 |
| authorships[3].author.display_name | Yaxi Kuang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210136859 |
| authorships[3].affiliations[0].raw_affiliation_string | Shaanxi Key Laboratory of Network Data Intelligent Processing, Xi’an University of Posts and Telecommunications, Xi’an 710121, China |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I4210136859 |
| authorships[3].affiliations[1].raw_affiliation_string | Xi’an Key Laboratory of Big Data and Intelligent Computing, Xi’an University of Posts and Telecommunications, Xi’an 710121, China |
| authorships[3].affiliations[2].institution_ids | https://openalex.org/I4210136859 |
| authorships[3].affiliations[2].raw_affiliation_string | School of Computer Science, Xi’an University of Posts and Telecommunications, Xi’an 710121, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210136859 |
| authorships[3].institutions[0].ror | https://ror.org/04jn0td46 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210136859 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Xi’an University of Posts and Telecommunications |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yaxi Kuang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Computer Science, Xi’an University of Posts and Telecommunications, Xi’an 710121, China, Shaanxi Key Laboratory of Network Data Intelligent Processing, Xi’an University of Posts and Telecommunications, Xi’an 710121, China, Xi’an Key Laboratory of Big Data and Intelligent Computing, Xi’an University of Posts and Telecommunications, Xi’an 710121, China |
| authorships[4].author.id | https://openalex.org/A5100419627 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6548-6070 |
| authorships[4].author.display_name | Yanping Chen |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210136859 |
| authorships[4].affiliations[0].raw_affiliation_string | Shaanxi Key Laboratory of Network Data Intelligent Processing, Xi’an University of Posts and Telecommunications, Xi’an 710121, China |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I4210136859 |
| authorships[4].affiliations[1].raw_affiliation_string | School of Computer Science, Xi’an University of Posts and Telecommunications, Xi’an 710121, China |
| authorships[4].affiliations[2].institution_ids | https://openalex.org/I4210136859 |
| authorships[4].affiliations[2].raw_affiliation_string | Xi’an Key Laboratory of Big Data and Intelligent Computing, Xi’an University of Posts and Telecommunications, Xi’an 710121, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210136859 |
| authorships[4].institutions[0].ror | https://ror.org/04jn0td46 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210136859 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Xi’an University of Posts and Telecommunications |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yanping Chen |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Computer Science, Xi’an University of Posts and Telecommunications, Xi’an 710121, China, Shaanxi Key Laboratory of Network Data Intelligent Processing, Xi’an University of Posts and Telecommunications, Xi’an 710121, China, Xi’an Key Laboratory of Big Data and Intelligent Computing, Xi’an University of Posts and Telecommunications, Xi’an 710121, China |
| authorships[5].author.id | https://openalex.org/A5062142229 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8784-8674 |
| authorships[5].author.display_name | Qixing Zhang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I126520041 |
| authorships[5].affiliations[0].raw_affiliation_string | State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China |
| authorships[5].institutions[0].id | https://openalex.org/I126520041 |
| authorships[5].institutions[0].ror | https://ror.org/04c4dkn09 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I126520041, https://openalex.org/I19820366 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | University of Science and Technology of China |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Qixing Zhang |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2079-9292/12/11/2492/pdf?version=1686041613 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-06-02T00:00:00 |
| display_name | Fully Synthetic Videos and the Random-Background-Pasting Method for Flame Segmentation |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12597 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2213 |
| primary_topic.subfield.display_name | Safety, Risk, Reliability and Quality |
| primary_topic.display_name | Fire Detection and Safety Systems |
| related_works | https://openalex.org/W4379231730, https://openalex.org/W4389858081, https://openalex.org/W3147584709, https://openalex.org/W4324315429, https://openalex.org/W2501551404, https://openalex.org/W4385583601, https://openalex.org/W2977677679, https://openalex.org/W1992327129, https://openalex.org/W4386159726, https://openalex.org/W1522196789 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/electronics12112492 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210202905 |
| best_oa_location.source.issn | 2079-9292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2079-9292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Electronics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2079-9292/12/11/2492/pdf?version=1686041613 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Electronics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/electronics12112492 |
| primary_location.id | doi:10.3390/electronics12112492 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210202905 |
| primary_location.source.issn | 2079-9292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2079-9292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Electronics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2079-9292/12/11/2492/pdf?version=1686041613 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Electronics |
| primary_location.landing_page_url | https://doi.org/10.3390/electronics12112492 |
| publication_date | 2023-05-31 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2951202157, https://openalex.org/W3020703583, https://openalex.org/W3136217325, https://openalex.org/W3199537137, https://openalex.org/W3012420847, https://openalex.org/W3182236906, https://openalex.org/W1903029394, https://openalex.org/W2963150697, https://openalex.org/W2954996726, https://openalex.org/W2963108767, https://openalex.org/W2963459241, https://openalex.org/W3178221902, https://openalex.org/W2795889831, https://openalex.org/W2604654088, https://openalex.org/W2944223741, https://openalex.org/W2963271314, https://openalex.org/W3176659256, https://openalex.org/W2963201472, https://openalex.org/W1836465849, https://openalex.org/W2108598243, https://openalex.org/W6620707391, https://openalex.org/W2980784832, https://openalex.org/W2090748520, https://openalex.org/W639708223, https://openalex.org/W2187089797 |
| referenced_works_count | 25 |
| abstract_inverted_index.a | 57, 93, 108 |
| abstract_inverted_index.In | 46 |
| abstract_inverted_index.We | 70, 90, 145 |
| abstract_inverted_index.an | 16 |
| abstract_inverted_index.by | 9, 189 |
| abstract_inverted_index.if | 134 |
| abstract_inverted_index.in | 19 |
| abstract_inverted_index.is | 15 |
| abstract_inverted_index.it | 38 |
| abstract_inverted_index.of | 33, 167, 171, 199 |
| abstract_inverted_index.on | 151, 176 |
| abstract_inverted_index.to | 5, 40, 67, 76, 96, 132 |
| abstract_inverted_index.we | 49, 54, 118 |
| abstract_inverted_index.The | 104, 173 |
| abstract_inverted_index.VFD | 43, 88 |
| abstract_inverted_index.and | 27, 64, 155, 162, 169, 179 |
| abstract_inverted_index.can | 55, 141, 194 |
| abstract_inverted_index.for | 24, 86 |
| abstract_inverted_index.has | 129 |
| abstract_inverted_index.it. | 69 |
| abstract_inverted_index.mPA | 166 |
| abstract_inverted_index.see | 133 |
| abstract_inverted_index.the | 31, 51, 98, 127, 135, 164, 177, 180, 184, 190, 197 |
| abstract_inverted_index.FCN, | 152 |
| abstract_inverted_index.VFD, | 20 |
| abstract_inverted_index.aims | 4 |
| abstract_inverted_index.also | 91 |
| abstract_inverted_index.fire | 7 |
| abstract_inverted_index.four | 147 |
| abstract_inverted_index.lack | 32 |
| abstract_inverted_index.mIoU | 170 |
| abstract_inverted_index.many | 72 |
| abstract_inverted_index.real | 114, 123, 143 |
| abstract_inverted_index.task | 18 |
| abstract_inverted_index.that | 53, 183 |
| abstract_inverted_index.this | 47 |
| abstract_inverted_index.with | 60, 112 |
| abstract_inverted_index.zero | 113 |
| abstract_inverted_index.(VFD) | 3 |
| abstract_inverted_index.0.783 | 168 |
| abstract_inverted_index.Flame | 13 |
| abstract_inverted_index.among | 101 |
| abstract_inverted_index.apply | 92 |
| abstract_inverted_index.based | 150 |
| abstract_inverted_index.flame | 1, 35, 62, 74, 79, 84, 99, 109, 115, 124, 159, 186, 202 |
| abstract_inverted_index.image | 11 |
| abstract_inverted_index.makes | 37 |
| abstract_inverted_index.model | 59, 111, 128, 136 |
| abstract_inverted_index.never | 130 |
| abstract_inverted_index.prove | 68 |
| abstract_inverted_index.train | 41, 56 |
| abstract_inverted_index.used, | 131 |
| abstract_inverted_index.using | 10, 122, 138, 157, 205 |
| abstract_inverted_index.video | 160 |
| abstract_inverted_index.which | 81, 126 |
| abstract_inverted_index.0.515. | 172 |
| abstract_inverted_index.U-Net, | 153 |
| abstract_inverted_index.design | 65 |
| abstract_inverted_index.events | 8 |
| abstract_inverted_index.extend | 77 |
| abstract_inverted_index.frames | 161 |
| abstract_inverted_index.images | 63, 100, 140 |
| abstract_inverted_index.method | 95, 106, 193 |
| abstract_inverted_index.models | 44, 149 |
| abstract_inverted_index.object | 28 |
| abstract_inverted_index.paper, | 48 |
| abstract_inverted_index.trains | 107 |
| abstract_inverted_index.videos | 75 |
| abstract_inverted_index.feature | 25 |
| abstract_inverted_index.highest | 165 |
| abstract_inverted_index.images, | 125 |
| abstract_inverted_index.images. | 116 |
| abstract_inverted_index.improve | 196 |
| abstract_inverted_index.methods | 204 |
| abstract_inverted_index.perform | 119 |
| abstract_inverted_index.propose | 50 |
| abstract_inverted_index.provide | 82 |
| abstract_inverted_index.regions | 23 |
| abstract_inverted_index.results | 175 |
| abstract_inverted_index.samples | 36, 85, 187 |
| abstract_inverted_index.segment | 142 |
| abstract_inverted_index.testing | 121 |
| abstract_inverted_index.trained | 137, 146 |
| abstract_inverted_index.virtual | 61, 73 |
| abstract_inverted_index.However, | 30 |
| abstract_inverted_index.adequate | 83 |
| abstract_inverted_index.analysis | 26 |
| abstract_inverted_index.existing | 78, 200 |
| abstract_inverted_index.methods. | 89 |
| abstract_inverted_index.objects. | 144 |
| abstract_inverted_index.obtained | 163 |
| abstract_inverted_index.positive | 34 |
| abstract_inverted_index.proposed | 105, 191 |
| abstract_inverted_index.Mask-RCNN | 156 |
| abstract_inverted_index.Moreover, | 117 |
| abstract_inverted_index.collected | 71 |
| abstract_inverted_index.datasets, | 80 |
| abstract_inverted_index.detection | 2 |
| abstract_inverted_index.different | 102 |
| abstract_inverted_index.difficult | 39 |
| abstract_inverted_index.essential | 17 |
| abstract_inverted_index.features. | 12 |
| abstract_inverted_index.generated | 188 |
| abstract_inverted_index.obviously | 195 |
| abstract_inverted_index.providing | 21 |
| abstract_inverted_index.recognize | 6 |
| abstract_inverted_index.settings. | 208 |
| abstract_inverted_index.suspected | 22 |
| abstract_inverted_index.synthetic | 158 |
| abstract_inverted_index.Deeplabv3, | 154 |
| abstract_inverted_index.assumption | 52 |
| abstract_inverted_index.distribute | 97 |
| abstract_inverted_index.evaluation | 207 |
| abstract_inverted_index.scenarios. | 103 |
| abstract_inverted_index.‘fake’ | 139, 185 |
| abstract_inverted_index.Video-based | 0 |
| abstract_inverted_index.demonstrate | 182 |
| abstract_inverted_index.experiments | 66 |
| abstract_inverted_index.performance | 198 |
| abstract_inverted_index.effectively. | 45 |
| abstract_inverted_index.experimental | 174 |
| abstract_inverted_index.recognition. | 29 |
| abstract_inverted_index.segmentation | 14, 58, 110, 120, 148, 203 |
| abstract_inverted_index.cross-dataset | 206 |
| abstract_inverted_index.state-of-the-art | 201 |
| abstract_inverted_index.FIRE-SMOKE-DATASET | 178 |
| abstract_inverted_index.deep-learning-based | 42, 87 |
| abstract_inverted_index.random-background-pasting | 94, 192 |
| abstract_inverted_index.Fire-Detection-Image-Dataset | 181 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5062142229 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I126520041 |
| citation_normalized_percentile.value | 0.08338506 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |