Functional Amyloids in Adhesion of Non-albicans Candida Species Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/pathogens14080723
· OA: W4412573096
Candida fungal species are the most common fungal opportunistic pathogens. Their ability to form antifungal resistant biofilms contributes to their increasing clinical frequency. These fungi express surface-anchored adhesins including members of the Als family. These adhesins mediate epithelial adhesion, aggregation, and biofilm formation. Many of the adhesins contain cross-β core sequences that form amyloid-like protein aggregates on the fungal surface. The aggregates mediate high-avidity bonding that contributes to biofilm establishment and persistence. Accordingly, autopsy sections from individuals with candidiasis and other mycoses have amyloids within abscesses. An amyloid-forming peptide containing a sequence from Candida albicans Als5 bound to C. albicans, C. tropicalis, and C. parapsilosis. C. albicans and C. tropicalis aggregated with beads coated with serum albumin, and the aggregates stained with the amyloid-binding dye thioflavin T. Additionally, an Als5-derived amyloid-inhibiting peptide blocked cell aggregation. The amyloid-inhibiting peptide also blocked C. albicans, C. tropicalis, and C. parapsilosis adhesion to monolayers of FaDu epithelial cells. These results show the involvement of amyloid-like interactions in pathogenesis in several Candida species.